
Branch Misprediction Prediction: Complementary Branch Predictors

Resit Sendag
Department of Electrical and Computer

Engineering
University of Rhode Island

Kingston, Rhode Island

Joshua J. Yi
Networking and Computing Systems

Group
Freescale Semiconductor, Inc.

Austin, The Great State of Texas

Peng-fei Chuang
Department of Electrical and Computer

Engineering
University of Minnesota
Minneapolis, Minnesota

Abstract1 – In this paper, we propose a new class of branch
predictors, complementary branch predictors, which can be
easily added to any branch predictor to improve the overall
prediction accuracy. This mechanism differs from
conventional branch predictors in that it focuses only on
mispredicted branches. As a result, this mechanism has the
advantages of scalability and flexibility (can be implemented
with any branch predictor), but is not on the critical path.
More specifically, this mechanism improves the branch
prediction accuracy by predicting which future branch will
be mispredicted next and when that will occur, and then it
changes the predicted direction at the predicted time. Our
results show that a branch predictor with the branch
misprediction predictor achieves the same prediction
accuracy as a conventional branch predictor that is 4 to 16
times larger, but without significantly increasing the overall
complexity or lengthening the critical path.

I. INTRODUCTION

Typically, increased branch prediction accuracy comes
at the cost of increased complexity (e.g., more complex
algorithms) and chip area (e.g., larger tables). Unfortunately,
this may result in higher prediction latencies and an increased
misprediction penalty which may ultimately offset the higher
prediction accuracy, resulting in a net performance loss [2].
By contrast, in this paper, we propose a complementary
branch prediction mechanism that is designed to be both
scalable and flexible, does not affect the prediction latency,
and is not the branch predictor’s critical path. The reason that
our mechanism has these characteristics is because it targets
mispredicted branches only, which are the subset of branches
that the branch predictor does not predict accurately. Our
mechanism complements any branch predictor in that it
strengthens the weakness of the branch predictor, namely,
frequently mispredicted branches which are either due to the
limitations of the branch predictor's algorithm or its
implementation.

More specifically, this mechanism uses the branch
misprediction history to predict which future branch will
mispredict next and when that will occur. Then, before the
misprediction actually occurs, the branch misprediction
predictor (BMP) changes the prediction to avoid a
misprediction and the subsequent recovery. Since it only
focuses on frequently mispredicted branches, it has the
advantage of flexibility in that it can improve the branch
prediction accuracy of any branch predictor, static or

1 This work was supported in part by National Science Foundation

Grant CCF-0541162.
Manuscript submitted: 01-Jul-2007. Manuscript accepted: 07-Aug-

2007. Final manuscript received: 12-Sep-2007.

dynamic, simple or complex. And since it targets future
branches only, the BMP can be added to any processor
without significantly changing the current branch predictor or
the pipeline. Finally, in contrast with the state-of-the-art, the
BMP is not on the processor’s critical path because it: 1) Is
accessed only after a branch misprediction and 2) Makes
predictions for future branches only. Consequently, it does
not affect the prediction latency, which allows for scalability.

To demonstrate the efficacy of this new class of branch
predictors, we implemented a simple, but fully functional,
BMP. Based on our results, we make the following
conclusions about complementary branch predictors such as
the BMP:

1. It yields A) higher prediction accuracy without
significantly increasing the size or latency of the
predictor or B) the same accuracy with a lower area
and power cost.

2. It significantly improves the branch prediction
accuracy of all branch predictors that we tested, from
relatively simple gshare predictors to complex neural
predictors, for the SPEC CPU2000 benchmarks.

3. It is more scalable since it is not on the critical path of
the branch predictor and will not increase the number
of front-end pipeline stages.

II. PREDICTING BRANCH MISPREDICTIONS

Fundamentally, the BMP operates by determining
patterns of branch mispredictions and correcting future,
incorrect predictions. The remainder of this section describes
how the BMP detects and corrects future mispredictions, a
simple implementation, and how it interacts with a
conventional branch predictor.

A. Description, Operation, and Implementation of the
Mispredicted Branch Table

The key component of the BMP is the mispredicted
branch table (MPBT). We form the index to the MPBT by
XOR-ing the PC of current mispredicted branch with global
history bits and with a concatenation of the misprediction
history bits and the branch misprediction distance (the
number of committed branches between the last two branch
mispredictions).

The output of the MPBT is a prediction of the distance
to and address of the next-to-be-mispredicted branch. Note
that this output is fundamentally different than the predicted
direction that is the output of conventional branch predictors.

After every misprediction, the BMP forms the index
and accesses the MPBT to predict when – in terms of the
number of branches – the branch predictor will mispredict

IEEE Computer Architecture Letters Vol. 6, 2007

Posted to IEEE & CSDL on 9/26/2007
DOI 10.1109/L-CA.2007.13

 1556-6056/07/$25.00 © 2007 Published by the IEEE Computer Society

again. The BMP decrements the predicted distance counter
every time a branch instruction is fetched. When the
predicted distance is zero, the predicted branch address is
compared against the PC of the current branch; if they
match, the BMP corrects the branch prediction.

MPBT implementation and prediction: The width of
each MPBT entry is 14 bits wide; 4 bits for the address, 8
bits for the distance, 1 used bit, and 1 T/NT bit. These values
work sufficiently well for the SPEC CPU2000 benchmarks.
After indexing the MPBT, the entry corresponding to the
index is copied into two registers, one of which stores the 4-
bit next-to-be-mispredicted PC (NMPC) and the 1-bit T/NT
field, while the other stores the 8-bit misprediction distance
(MPD). The NMPC register and T/NT field update only after
a branch misprediction. By contrast, the MPD register value
decrements after each fetched branch instruction until the
next misprediction occurs (at which point the counter is set to
the next predicted misprediction distance) or it decrements to
zero, whichever happens first. In the former case, the BMP
has overestimated the distance, so its prediction of a branch
misprediction is ignored. Note that this does not result in any
additional branch mispredictions.

Updating the MPBT: After a branch misprediction, the
8-bit branch counter (BC) starts counting the number of
committed branches between consecutive mispredictions.
After the next misprediction, the BMP updates the MPBT
entry that made the last prediction with the value of the BC
and bits 3 to 6 of the PC of the mispredicted branch, and the
T/NT field is updated with the predicted direction (which
was wrong).

Correct BMP predictions set the used bit for that entry.
If the used bit is set, but the MPBT prediction is wrong, the
entry is not updated and the used bit is reset. This approach
protects MPBT entries from eviction based on a single
misprediction. However, this entry will be evicted if it
causes two consecutive incorrect predictions of branch
mispredictions. The used bit also alleviates any aliasing to
the same entry.

B. Interaction with the branch predictor

The BMP only interacts with the branch predictor for a
branch that is predicted to be mispredicted, which is
significantly less often than a confidence estimator does (i.e.,

on every predicted branch). Since the BMP’s prediction is
made well ahead of the time, different optimizations can be
used to eliminate the extra latency due to correcting a future
prediction. One possible optimization would be to time any
actions to finish at the same time that the MPD value reaches
zero. However, specific optimizations of the basic BMP
design are out of the scope for this paper.

III. RESULTS AND ANALYSIS

To evaluate the efficacy of our BMP mechanism, we
added it to the gshare [5], PAp [7], Alpha 21264 [4]
(“Alpha”), and piecewise linear [3] (“PWL”) branch
predictors and evaluated it for all 26 SPEC CPU2000
benchmarks.

A. Branch Misprediction Predictor Performance

Figures 1 and 2 show the reduction in the branch
misprediction rate due to using the 64, 256, 1024, and 4096
entry BMPs, for the integer and floating-point benchmarks,
respectively. The baseline size of the branch predictors is
8KB.

The results show that using the BMP mechanism
significantly reduces the number of branch mispredictions for
all branch predictors and for all benchmarks. More
specifically, adding a 64-entry BMP reduces the branch
misprediction rate by 13.9% (alpha) to 20.0% (gshare) for
the SPECint benchmarks and 53.0% (PWL) to 66.9%
(gshare) for the SPECfp benchmarks. For swim, mgrid,
applu, art, and lucas, the BMP is able to eliminate over 90%
of the branch mispredictions for at least one branch predictor.
Based on these results, we conclude that our BMP
mechanism is able to significantly reduce the branch
misprediction rate of both simple and complex branch
predictors, which, in addition to its relatively small size and
low complexity, makes it a very appealing complement to
virtually any branch predictor.

To compute the BMP prediction accuracy, we divide the
number of successfully corrected predictions by the sum of
the number of successfully and unsuccessfully corrected
predictions. For most BMP sizes and branch predictors, the
prediction accuracy is over 90% which means that the BMP
is extremely accurate in predicting both which future branch
will mispredict next and when it will be mispredicted.

0

10

20

30

40

50

60

70

80

gs
ha

re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf Ave

R
 e

 d
 u

 c
 t

i o
 n

i n

B

r a
 n

 c
 h

M

 i
s

p
r e

 d
 i

c
t i

 o
 n

R

 a
 t

e 4096 Entries

1024 Entries

256 Entries

64 Entries

Figure 1. Percentage reduction in the branch misprediction rate due to BMP for SPECint

IEEE Computer Architecture Letters Vol. 6, 2007

0

10

20

30

40

50

60

70

80

90

100

gs
ha

re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p
A

lp
ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L
gs

ha
re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p
A

lp
ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L
gs

ha
re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p
A

lp
ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L
gs

ha
re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p
A

lp
ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L
gs

ha
re

P
A

p

A
lp

ha

P
W

L

gs
ha

re

P
A

p
A

lp
ha

P
W

L

gs
ha

re

P
A

p

A
lp

ha

P
W

L

wupwise swim mgrid applu mesa galagel art equake facerec ammp lucas fam3d sixtrack apsi AveR
 e

 d
 u

 c
 t

i o
 n

i n

B

r a
 n

 c
 h

M

 i
s

p
r e

 d
 i

c
t i

 o
 n

R

 a
 t

e
64 Entries 256 Entries
1024 Entries 4096 Entries

Figure 2. Percentage reduction in the branch misprediction rate due to BMP for SPECfp

B. Hardware Budget vs. Branch Prediction Accuracy:
Comparing the BMP vs. Larger Branch Predictors

Table 1 shows the hardware budget that each branch
predictor needs to have to match or exceed the branch
prediction accuracy for branch predictors that have the BMP
mechanism. The total hardware budget of the BP+BMP
predictor is less than 4KB (BP+BMP: 2KB+1.8KB) The
results in Table 1 show that for all benchmark suites, a
branch predictor without a BMP mechanism needs to have a
hardware budget that is at least four times as large as the
branch predictor with the BMP mechanism. For the SPECfp
benchmarks, matching the branch prediction accuracy of the
BMP-based branch predictor of 4KB requires a branch
predictor with a hardware budget of more than 64KB.
However, using such a large branch predictor would most
likely significantly increase the prediction latency, thus
offsetting the performance gains due to the higher branch
prediction accuracy. By contrast, adding the BMP
mechanism to a smaller, faster branch predictor can achieve
the same or higher prediction accuracies without incurring
higher prediction latencies and power consumption.

Table 1. Hardware budget of branch predictor needed to match/exceed
the branch prediction accuracy of a 2KB branch predictor with a 1024-
entry BMP (Total budget of < 4KB)

Suite gshare pap Alpha PWL
Int 16KB > 64KB 16KB 32KB
FP > 64KB > 64KB > 64KB > 64KB

C. Comparing the BMP vs. Loop Predictors

At first glance, the BMP may appear to be another type
of loop predictor (LP) [1]. However, there are several
significant differences between the BMP and a LP. First, the
BMP is not limited only to loops, but rather can target all
types of branches. Second, the LP only uses local history to
make predictions while the BMP uses different types of
global history (e.g., global misprediction history) to make its
predictions. Finally, since the LP competes with other
constituent predictors within the branch predictor, even if it
is chosen as the highest confidence prediction, its prediction
may not be different than the predictions from the other
constituent predictors, i.e., all predictors may make a correct
prediction. By contrast, the BMP only makes predictions for

frequently mispredicted branches. To quantify the
performance difference between a BMP and LP, we
implemented the loop predictor that was described in [6].

Figure 3 shows the breakdown of branches, as
percentage of all branch mispredictions (i.e., when the LP
and BMP are not used), that were successfully predicted by
the LP, but not by the BMP (bottom-most segment – “LP
Only”); the BMP, but not by the LP (top-most segment –
“BMP Only”); and by both the BMP and LP (middle
segment – “BMP and LP Both Correct”). Therefore, the
height of the bottom two segments shows the percentage of
mispredictions that were avoided due to using the LP, while
the height of the top two segments shows the percentage of
mispredictions that were successfully corrected by the BMP.
The size of both the LP and BMP was 4KB while the
baseline branch predictor size was 8KB.

For the integer benchmarks, the results in Figure 3 show
that the LP corrects a very small number of mispredictions
(less than 2.3% for all branch predictors) that the BMP does
not correctly predict. Overall, the bottom two segments show
that the LP corrects fewer than 8.1% of the mispredictions.
By contrast, the BMP corrects at least 23% of all
mispredictions, including 18% of all mispredictions that the
LP does not correctly predict.

The results for the floating-point benchmarks are
similar, with exception that the LP corrects a much higher
number of mispredictions. Nevertheless, the BMP
outperforms the LP for all predictors.

0
10
20
30
40
50
60
70
80
90

100

gshare PAp Alpha PWL gshare PAp Alpha PWL

Integer Floating-Point

%
 o

f M
isp

re
di

ct
io

ns
 C

or
re

ct
ly

 C
ha

ng
ed BMP Only

BMP and LP Both Correct

LP Only

Figure 3. Breakdown of branches that were successfully predicted due to
using a LP or a BMP as a percentage of the total number of
mispredictions. Both LP and BMP are 4KB. Baseline BP is 8KB.

On average, 21% and 65% of the mispredictions
eliminated by BMP are due to loops, which a loop predictor
can also correct, for SPEC integer and floating-point
benchmarks, respectively.

IEEE Computer Architecture Letters Vol. 6, 2007

IV. INVESTIGATING WHY BMP WORKS

To investigate why and where a BMP helps to correct
branch mispredictions, we first check whether the BMP
primarily corrects mispredictions that are the result of
conflicts in branch predictor table, i.e., aliasing. Conflicts
occur when multiple branch-history pairs share the same
location in the branch predictor table. Figure 4a shows
percentage of branch mispredictions corrected by BMP that
are due to the conflicts for varying sizes of gshare branch
predictor. This figure shows the average behavior of 8
selected SPEC benchmarks (gcc, eon, perl, gap, vortex,
mesa, fma3d, and apsi) where BMP does very well. To filter
out the impact of fixed loop counts, benchmarks where both
BMP and a loop predictor do well are not included. Figure 4a
shows that, for a constant 0.5KB size BMP, the percentage
of mispredictions corrected by BMP that are due to conflicts
in the branch predictor table decreases as the branch
predictor size increases, from 60% when using 0.25KB BP to
less than 4% for 64KB and larger BPs. Since the percentage
of the mispredictions due to conflicts decreases dramatically
for increasing branch predictor sizes (From 68% for 0.25KB
gshare to 1.8% for 1MB gshare (not shown)) and since the
BMP can reduce the overall branch misprediction rate by
about 50% for different sizes of the gshare predictor, as
shown in Figure 4a, we conclude that the BMP does not
primarily correct mispredictions that are due to conflicts in
the branch predictor tables only, but does correct
mispredictions due to other non-capacity-based reasons.

0

10

20

30

40

50

60

0.25k 1k 4k 16k 64k 256k 1m

Conflict mispredictions in BP Non-conflict mispredictions in BP

(a) (b)
Figure 4. (a) Percentage reduction in misprediction rate with a 0.5KB
BMP for varying sizes of gshare BP. (b) A code example where BMP
works well.

To understand the causes of branch mispredictions that
are not due to conflicts, we analyze profile data and the
source code for the 8 SPEC 2000 benchmarks. We observed
that in these benchmarks, 30% to 60% of the mispredictions
that are corrected by BMP are due to loop branches that have
varying loop counts, which are longer than what a branch
predictor can distinguish, or have early loop exits, such as a
break in a for or a while loop. Figure 4b presents a
synthetic, but representative, code snippet. Variations of this
example code occur in all benchmarks (see [8]), often with
unstable loop counts or early loop exits. This example
shows a simple loop whose loop count alternates between
100 and 150. The exit branch for the for loop will be
mispredicted for as many times as the while loop condition
is true. In the example, 150 bits of history is needed to
eliminate the mispredictions at the loop exit. Simulations
confirm that various branch predictors with a 256KB
hardware budget and an 8KB loop predictor mispredicted the
loop exit branch every time. By contrast, a 4-entry BMP can

easily correct all of these mispredictions by predicting the
next misprediction distance, which is either 101 or 151.

Another example where the BMP works is an early exit
branch inside a for loop, which further complicates the
branch history. This type of behavior is also often seen in the
benchmarks that we studied. The early exit branch inside the
for loop will be mispredicted often when it is taken. In the
same manner that the BMP corrected mispredictions for the
for loop in Figure 4b, BMP can also correct this type of
misprediction, while the other branch predictors that we
tested do not.

In summary, the code in Figure 4b shows that a BMP is
an alternative approach to exploit long branch histories.
While some advanced branch predictors have been proposed,
such as neural predictors [3] or O-GEHL predictor [9], they
are much more complex and larger than a simple BMP. BMP
complements branch predictors to exploit very long histories
without significant hardware complexity and delay.

The ability to provide longer history and to help
alleviate branch predictor table conflicts is not the only way
in which a BMP correct mispredictions. A detailed analysis
of the misprediction patterns and why branch predictors fail
to exploit these patterns need further research, and left as
future work.

V. CONCLUSION AND FUTURE WORK

In this paper, we present the branch misprediction
predictor (BMP). BMP tracks the misprediction histories of
branches at the local and global levels and uses this
information to predict when the next branch misprediction
will occur and for which branch. Then, at the predicted time,
the BMP changes the prediction for the specific branch. By
focusing on future branch mispredictions, BMP is off the
processor’s critical path, thereby simultaneously increases
the branch prediction accuracy without increasing the
prediction latency. Our results show that the BMP can
significantly reduce the branch misprediction rate for both
simple and complex branch predictors. To achieve the same
prediction accuracy, branch predictors without a BMP
require hardware budgets that are 4 to 16 times larger.

The BMP described in this paper was just a proof-of-
concept to validate the efficacy of complementary branch
predictors. However, a detailed analysis of the misprediction
patterns and why branch predictors fail to exploit these
patterns need further research. In the future, we plan to: 1)
further investigate the causes of misprediction patterns 2)
explore alternative BMP indexes, and 3) evaluate the effects
on IPC performance and power.

VI. REFERENCES

[1] Gochman et al., “The Intel PentiumM processor: Microarchitecture and
performance,” Intel Tech. Journal, 7(2), pp. 21-33, 2003.

[2] D. Jiménez, “Reconsidering complex branch predictors,” HPCA 2003.
[3] D. Jiménez, “Piecewise Linear branch prediction,” ISCA 2005.
[4] R. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, 1999.
[5] S. McFarling, “Combining Branch Predictors,” Digital Res. Lab. Tech.

Rep. TN-36M, 1993.
[6] A. Seznec, “A 256 Kbits L-TAGE branch predictor,” JILP, 2006.
[7] T. Yeh and Y. Patt, “Two-Level Adaptive Branch Prediction,” MICRO

1991.
[8] Sendag et al., “Branch Misprediction Patterns,” URI Tech. Rep., 2007.
[9] A. Seznec, “Analysis of the O-GEHL predictor,” ISCA 2005.

IEEE Computer Architecture Letters Vol. 6, 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

