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Abstract 
 

Due to cost, time, and flexibility constraints, simulators 
are often used to explore the design space when 
developing new processor architectures, as well as when 
evaluating the performance of new processor 
enhancements. However, despite this dependence on 
simulators, statistically rigorous simulation methodologies 
are not typically used in computer architecture research. 
A formal methodology can provide a sound basis for 
drawing conclusions gathered from simulation results by 
adding statistical rigor, and consequently, can increase 
confidence in the simulation results. This paper 
demonstrates the application of a rigorous statistical 
technique to the setup and analysis phases of the 
simulation process. Specifically, we apply a Plackett and 
Burman design to: 1) identify key processor parameters, 
2) classify benchmarks based on how they affect the 
processor, and 3) analyze the effect of processor 
performance enhancements. Our technique expands on 
previous work by applying a statistical method to improve 
the simulation methodology instead of applying a 
statistical model to estimate the performance of the 
processor. 
 
 
1. Introduction 
 

Simulators are an extremely valuable tool for computer 
architects. They reduce the cost and time of a project by 
allowing the architect to quickly evaluate different 
processor implementations. Additionally, they allow the 
architect to quickly determine the expected performance 
improvement of a new processor enhancement. 

Despite this dependence on simulators, architects often 
approach the simulation process in an ad-hoc manner. For 
example, when performing a sensitivity analysis, the 
architect will hold most of the processor parameters 
constant while varying the values of a select group. 
However, there are several questions that must be 
addressed regarding the simulation setup. For instance, 

which parameters should be held constant? What values 
should be used for those parameters? Do any of the 
constant parameters interact with the variable ones? What 
is the magnitude of the effects for those interactions? How 
much impact do the specific values for the constant 
parameters have? What range of values should be used to 
test the effects of the variable parameters? 

Since it is impossible to separate out the effect of the 
interactions and constant parameters after performing the 
simulations, the architect must answer these questions 
before starting the simulations. Due to the sheer 
computational cost, however, it is virtually impossible to 
simulate all possible combinations of parameters. This 
situation illustrates the need for a statistically-based 
methodology to answer these types of questions. 

While using such a methodology may require some 
additional simulations, it also has the following 
advantages: 

 
1) It decreases the number  of er rors that are 

present in the simulation process and helps the 
computer architect detect errors more quickly. 
Errors include, but are not limited to, simulator 
modeling errors, user implementation errors, and 
simulation setup errors [2, 4, 5, 8, 10]. 

2) It gives more insight into what is occurring inside 
the processor or the actual effect of a processor 
enhancement. 

3) It gives objective confidence to the results and 
provides statistical suppor t regarding the 
observed behavior. 

 
While the first and third advantages are self-

explanatory, it is not obvious from the second advantage 
how a statistically-based methodology could improve the 
quality of the analysis. However, since simulators are 
complex, it is very difficult to fully understand the effect 
that a design change or an enhancement may have on the 
processor. As a result, architects use high-level metrics, 
such as speedup, to understand the “big-picture”  effects. 
However, analyzing the processor from a statistical point-
of-view can help the architect quantify the effects that all 



 

components have on the performance and on other 
important design metrics (e.g. power consumption, etc.). 

Therefore, as a first step in developing a formal 
methodology, this paper makes specific suggestions on 
how to improve the simulation setup process and the 
analysis of results. The suggestions include methods for 
identifying the key processor parameters, for classifying 
benchmarks based on how they affect the processor, and 
for analyzing the effect of a processor enhancement. 

The contributions of this paper are as follows: 
 
1) This paper demonstrates the need for 

methodological improvement in computer 
architecture research and the efficacy of a 
particular statistical method to accomplish that. 

2) This paper makes specific recommendations on 
how to improve the simulation methodology. In 
particular, the recommendations include how to: 
A) choose the processor parameter values, B) 
classify benchmarks, and C) analyze the effect that 
an enhancement has on the processor. 
Collectively, these recommendations can improve 
the simulation methodology, decrease the total 
number of simulations, quickly determine the 
processor’s bottlenecks, and provide analytical 
insights into the impact of processor 
enhancements.  

3) This paper, by way of illustrating the second 
contribution, determines the most important 
machine parameters in the commonly used 
SimpleScalar superscalar simulator [3]. 

 
The remainder of this paper is organized as follows: 

Section 2 describes the statistical Plackett and Burman 
design. Sections 3 and 4 describe the experimental setup 
and the results, respectively, while Section 5 discusses 
some related work. Section 6 concludes. 
 
2. Plackett and Burman Designs 
 

In this paper, we used a Plackett and Burman (PB) 
design [23] to determine the effect that a parameter has on 
the processor’s performance. While we could have used 
one of several other statistical techniques, we chose the PB 
design because it required only about N simulations 
(where N is the number of parameters) to produce the 
desired level of information. The other approaches that we 
considered using were the “one-at-a-time” technique and 
the ANOVA technique [17]. However, these two 
techniques did not produce the desired level of information 
(one-at-a-time) or required 2N simulations (ANOVA). A 
detailed comparison of these three techniques can be found 
in [33]. 

Saturated designs, such as the PB design, are recipes 
that vary all N parameters simultaneously over N+1 

simulations. They provide the logically minimal number of 
simulations required to estimate the effect of each of the N 
parameters. An improvement on the basic PB design is the 
“ foldover”  PB design [19]. This requires approximately 
2N simulations. With this experimental design, the user 
can determine the effects of all of the main parameters and 
selected interactions. Since PB designs exist only in sizes 
that are multiples of 4, the base PB design requires X 
simulations, where X is the next multiple of four that is 
greater than N (including if N is a multiple of 4), while the 
foldover PB design requires 2X simulations. 

However, the downside of the PB design is that it 
cannot quantify the effects of all of the interactions. 
Therefore, it is possible that unknown, but significant, 
interactions may alter the apparent effect of any of the 
parameters. Fortunately for computer architects, this 
situation probably does not occur for processor 
parameters. The results in [32] show that if an interaction 
between parameters was significant, it was significant only 
because each of its constituent parameters was 
individually significant. Additionally, the effects of the 
most significant interactions were relatively small 
compared to the effects of the most significant parameters. 
As a result, using a PB design with foldover to analyze the 
effects of the processor parameters does not compromise 
the results. 

The parameters’  configuration for each simulation run 
is given by the PB design matrix which, for most values of 
X, is simple to construct. The rows of the design matrix 
correspond to different configurations while the columns 
correspond to the parameters’  values in each 
configuration. When there are more columns than 
parameters (i.e. N < X – 1), then the extra columns are 
simply “dummy parameters”  and have no effect on the 
simulation results. For these values of X, the first row of 
the design matrix is given in [23]. The next X – 2 rows are 
formed by performing a circular right shift on the 
preceding row. The last line of the design matrix is a row 
of minus ones. The gray-shaded portion of Table 1 
illustrates the construction of the PB design matrix for 
X=8, a design appropriate for investigating 7 (or fewer) 
parameters. When using foldover, X additional rows are 
added to the matrix. The signs in each entry of the 
additional rows are the opposite of the corresponding 
entries in the original matrix. Table 1 shows the complete 
PB design matrix with foldover. Note that rows 10-17 
specifically show the additional foldover rows. 

A “+1” , or high value, for a parameter represents a 
value that is higher than the range of normal values for 
that parameter while a “-1” , or low value, represents a 
value that is lower than the range of normal values. It is 
important to note that the high and low values are not 
restricted to only numerical values. For example, in the 
case of branch prediction, the high and low values could 
be perfect and 2-level branch prediction, respectively. It is 



 

also important to note that choosing high and low values 
that yield too large a range can artificially inflate the 
parameter’s apparent effect; too small a range has the 
opposite result. Therefore, the user should exercise some 
caution when choosing each value. Ideally, the high and 
low values for each parameter should be just outside of the 
“normal”  range of values. 
 

Table 1. Plackett and Burman design matrix 
with foldover (X=8). 

 
A B C D E F G Exec. Time 
+1 +1 +1 -1 +1 -1 -1 9 
-1 +1 +1 +1 -1 +1 -1 11 
-1 -1 +1 +1 +1 -1 +1 2 
+1 -1 -1 +1 +1 +1 -1 1 
-1 +1 -1 -1 +1 +1 +1 9 
+1 -1 +1 -1 -1 +1 +1 74 
+1 +1 -1 +1 -1 -1 +1 7 
-1 -1 -1 -1 -1 -1 -1 4 
-1 -1 -1 +1 -1 +1 +1 17 
+1 -1 -1 -1 +1 -1 +1 76 
+1 +1 -1 -1 -1 +1 -1 6 
-1 +1 +1 -1 -1 -1 +1 31 
+1 -1 +1 +1 -1 -1 -1 19 
-1 +1 -1 +1 +1 -1 -1 33 
-1 -1 +1 -1 +1 +1 -1 6 
+1 +1 +1 +1 +1 +1 +1 112 

191 19 111 -13 79 55 239  
 

After determining the configurations and performing 
the simulations, the effect of each parameter is computed 
by the multiplying the parameter’s PB value for a 
configuration by the result (e.g. execution time) for that 
configuration and summing the resulting products across 
all configurations. For example, the effect of parameter A 
from Table 1 is computed as follows: 

 
EffA = (1 * 9) + (-1 *  11) + … + (-1 *  6) + (1 * 112) = 191 

 
For the example in Table 1, the parameters with the most 
effect are G, A, and C, in order of their overall impact on 
performance. Only the magnitude of the effect is 
important; the sign of the effect is meaningless. 
 
3. Simulator, Benchmarks, and Parameters  
 

In the remainder of the paper, we show how a PB 
design can be used to select parameter values and 
benchmark programs for simulations, and how it can 
provide insights into the impact of a processor 
enhancement. The base simulator, sim-outorder, is from 
the SimpleScalar tool suite [3] and models a superscalar 
processor. We modified sim-outorder to include user 

configurable instruction latencies and throughputs. 
The benchmarks that were used in this paper, shown in 

Table 2, were selected from the SPEC 2000 benchmark 
suite. We chose these benchmarks because they were the 
only ones that had MinneSPEC [14] reduced input sets 
available at the time. All benchmarks were compiled at 
optimization level O3 using the SimpleScalar version of 
the gcc compiler and were run to completion. 
 

Table 2. Selected benchmarks from the SPEC 
2000 benchmark suite used in this paper. 

 
 Benchmark Type Dynamic Instr. (M) 

gzip Integer 1364.2 
vpr-Place Integer 1521.7 
vpr-Route Integer 881.1 

gcc Integer 4040.7 
mesa Floating-Point 1217.9 
art Floating-Point 2181.1 
mcf Integer 601.2 

equake Floating-Point 713.7 
ammp Floating-Point 1228.1 
parser Integer 2721.6 
vortex Integer 1050.2 
bzip2 Integer 2467.7 
twolf Integer 764.6 

 
Table 3. Processor core parameters and their 

Plackett and Burman values. 
 

Parameter Low Value High Value 

Fetch Queue Entries 4 32 
Branch Predictor 2-Level Perfect 

Branch MPred Penalty 10 Cycles 2 Cycles 
RAS Entries 4 64 
BTB Entries 16 512 
BTB Assoc 2-Way Fully-Assoc 

Spec Branch Update In Commit In Decode 
Decode/Issue Width 4-Way 

ROB Entries 8 64 
LSQ Entries 0.25 *  ROB 1.0 *  ROB 

Memory Ports 1 4 
 

As described in the Section 2, the parameter values 
should be chosen to be slightly too low and too high – with 
respect to the normal range – to allow the PB design to 
more accurately determine the effect of each parameter. 
As a result, the final values that we chose for each 
parameter are not values that would be actually present in 
commercial processors nor are they values that should be 
used in the simulations. Rather, the values were 
deliberately chosen to be slightly higher and lower than 
the range of “ normal”  values. We based our parameter



 

Table 4. Functional unit parameters and their 
Plackett and Burman values. 

 
Parameter Low Value High Value 

Int ALUs 1 4 
Int ALU Latency 2 Cycles 1 Cycle 

Int ALU Throughput 1 
FP ALUs 1 4 

FP ALU Latency 5 Cycles 1 Cycle 
FP ALU Throughputs 1 

Int Mult/Div Units 1 4 
Int Mult Latency 15 Cycles 2 Cycles 
Int Div Latency 80 Cycles 10 Cycles 

Int Mult Throughput 1 
Int Div Throughput Equal to Int Div Latency 
FP Mult/Div Units 1 4 
FP Mult Latency 5 Cycles 2 Cycles 
FP Div Latency 35 Cycles 10 Cycles 
FP Sqrt Latency 35 Cycles 15 Cycles 

FP Mult Throughput Equal to FP Mult Latency 
FP Div Throughput Equal to FP Div Latency 
FP Sqrt Throughput Equal to FP Sqrt Latency 

 
Table 5. Memory hierarchy parameters and their 

Plackett and Burman values. 
 

Parameter Low Value High Value 

L1 I-Cache Size 4 KB 128 KB 
L1 I-Cache Assoc 1-Way 8-Way 

L1 I-Cache Block Size 16 Bytes 64 Bytes 
L1 I-Cache Repl Policy Least Recently Used 

L1 I-Cache Latency 4 Cycles 1 Cycle 
L1 D-Cache Size 4 KB 128 KB 

L1 D-Cache Assoc 1-Way 8-Way 
L1 D-Cache Block Size 16 Bytes 64 Bytes 
L1 D-Cache Repl Policy Least Recently Used 

L1 D-Cache Latency 4 Cycles 1 Cycle 
L2 Cache Size 256 KB 8192 KB 

L2 Cache Assoc 1-Way 8-Way 
L2 Cache Block Size 64 Bytes 256 Bytes 
L2 Cache Repl Policy Least Recently Used 

L2 Cache Latency 20 Cycles 5 Cycles 
Mem Latency, First  200 Cycles 50 Cycles 
Mem Latency, Next  0.02*Mem Latency, First 

Mem Bandwidth 4 Bytes 32 Bytes 
I-TLB Size 32 Entries 256 Entries 

I-TLB Page Size 4 KB 4096 KB 
I-TLB Assoc 2-Way Fully Assoc 

I-TLB Latency 80 Cycles 30 Cycles 
D-TLB Size 32 Entries 256 Entries 

D-TLB Page Size Same as I-TLB Page Size 
D-TLB Assoc 2-Way Fully-Assoc 

D-TLB Latency Same as I-TLB Latency 

values on those found in several commercial processors. 
Our list of commercial processors included the Alpha 
21164 [1, 6] and 21264 [12, 13, 16, 18]; the UltraSparc I 
[29], II [21], and III [11]; the HP PA-8000 [15]; the 
PowerPC 604 [28]; and the MIPS R10000 [30]. To fill in 
the gaps left by these papers, [24, 25] and several web 
searches were also used as references. Tables 3, 4, and 5 
show the final values for each of the relevant parameters in 
the processor core, the functional units, and the memory 
hierarchy, respectively. 

A couple of parameters across all three tables are 
shaded in gray. For these parameters, the low and high 
values cannot be chosen completely independently of the 
other parameters due to the mechanics of the PB design. 
The problem occurs when one of those parameters is set to 
its high value while the parameter it is related to is set to 
its low value. That combination of values leads to a 
situation that either does not make sense or would not 
actually occur in a real processor. For example, if the 
number of LSQ entries was chosen independently of the 
number of ROB entries, then some of the configurations 
could have a 64-entry LSQ and an 8-entry ROB. But since 
the total number of in-flight instructions cannot exceed the 
number of reorder buffer entries, the maximum number of 
filled LSQ entries will never exceed 8. Therefore, to avoid 
those types of situations, the values for all gray-shaded 
parameters are based on their related parameter. 

All parameter values were based on a 4-way issue 
processor. While the issue width is a very important 
parameter, we fixed the issue width at four for two 
reasons. First of all, we fixed the issue width to avoid 
having a set of high and low values for each issue width 
since almost all of the parameters are related to the issue 
width. Having two sets of high and low values could 
dramatically affect the results. Second, we fixed issue 
width at four to eliminate the guesswork needed to 
determine the normal range of parameter values for a 
higher issue width processor. Also, there was a lot of 
documentation available for several 4-way issue 
commercial processors. Note that fixing the issue width 
does not affect the conclusions drawn from these 
simulations, especially since this is a methodology paper. 
Fixing the issue width merely removes it as a variable 
parameter. 

Finally, we used sim-outorder instead of the validated 
Alpha 21264 simulator [5] for three reasons. First, since 
this is a methodology paper, the specific simulator used 
does not affect the final conclusions since the simulation 
results serve only to illustrate certain key points. Second, 
since the Alpha simulator has many Alpha-architecture 
specific parameters, we used sim-outorder to avoid 
producing results that were particular to the 21264. Third, 
since sim-outorder is a popular simulator, using this 
simulator has the extra benefit of producing results that are 
beneficial to the SimpleScalar community. 



 

4. Plackett and Burman Design Results for 
the Simulation Setup and Analysis 
 

The three principal phases of the simulation process in 
computer architecture research are setup, simulation, and 
data analysis. The first phase occurs after the user 
determines the initial set of testcases and modifies the 
simulator and/or compiler. As a result, in the first phase, 
the user determines the values of the processor parameters 
and selects the benchmarks that will be simulated. In the 
third phase, the user analyzes the results that were 
gathered during the simulation phase. Then, depending on 
the results, the process may be repeated.  

This section focuses on improving the methodology of 
the first and third phases. To improve the methodology of 
the first phase, we describe a statistically rigorous method 
of choosing the processor parameter values. In addition, to 
improve the benchmark selection process, we describe a 
method of classifying benchmarks based on grouping 
together benchmarks that have similar effects on the 
processor. To improve the methodology of the third phase, 
we describe a method of analyzing the effect that an 
enhancement has on the base processor. For each method, 
we briefly describe the problem or pitfalls that could result 
if that particular method were not employed. Furthermore, 
to illustrate the efficacy, utility, and mechanics of each 
method, a short example is given. It is important to note 
that each example contains general results that can be 
considered a contribution to the art. 
 
4.1. Processor Parameter  Selection 
 

Improperly choosing the value of a single parameter 
can significantly affect the simulated speedup of a 
processor enhancement. For instance, simply increasing 
the reorder buffer size can change the speedup of value 
reuse [27] from approximately 20% to approximately 
30%. However, choosing a “good”  set of parameters is 
extremely difficult since many of the important parameters 
may interact, thereby compounding the error of selecting a 
single poor value. Determining which parameters interact 
requires performing a sensitivity analysis on all of the 
parameters simultaneously or choosing a select few 
parameters for detailed study. The problem with the 
former approach is that simulating all possible 
combinations is a virtual impossibility. And the problem 
with the latter approach is that in studying only a few 
parameters, the other parameters have to have constant 
values. Therefore, if one of the constant parameters 
significantly interacts with one of the free parameters, then 
the results of the sensitivity analysis will be distorted. 
Fortunately, this problem can be solved by using a PB 
design to identify the significant parameters. 

Table 6 shows the results of a PB design with foldover 
(X=44) for the base superscalar processor with the 

parameter values shown in Tables 3-5. After simulating all 
88 (2X) configurations, the PB design results were 
calculated. Then the parameters for each benchmark were 
assigned a rank based on the significance of the parameter 
(1 = most important). Then the ranks of each parameter 
were summed across all benchmarks and the resulting 
sums sorted in ascending order. Summing the ranks across 
benchmarks reveals the most significant parameters across 
all of the benchmarks. The parameters with the lowest 
sums represent the parameters that have the most effect 
across all benchmarks. 

Several key results can be drawn from this table. First, 
we see that only the first ten parameters are significant 
across all benchmarks. This conclusion is drawn by 
examining the large difference between the sum of the 
ranks of the tenth parameter (LSQ size) and the sum of the 
ranks of the eleventh parameter (Speculative Branch 
Update). Furthermore, we see that, while the ranks of the 
top ten parameters for each benchmark are completely 
different, two parameters (ROB Entries and L2 Cache 
Latency) are significant across all of the benchmarks since 
those two are almost always one of the most important 
parameters for every benchmark. This means that the 
Reorder Buffer and the L2 Cache latency are the two 
biggest bottlenecks in the processor. 

Second, the effect that each benchmark has on the 
processor can be clearly seen. For instance, since the ranks 
for the L1 I-Cache size, associativity, and block size are 
lower than or similar to the ranks for the L1 D-Cache size, 
associativity, and block size, respectively, for mesa, we 
conclude that mesa stresses the instruction cache more 
than the data cache. Table 6 also shows that mesa’s 
performance is highly dependent on the branch predictor 
and its related parameters (misprediction penalty, BTB 
entries and associativity, and the speculative branch 
update) since those parameters have relatively low ranks. 

Finally, several parameters have surprisingly low 
rankings in some benchmarks. For example, the FP square 
root latency in art has a rank of 5. Since art does not have 
a significant number of FP square root instructions, its 
rank does not appear to be consistent with its intuitive 
significance. However, what the rank does not show is that 
the magnitude of the effect for this parameter is much 
smaller than magnitudes of the effects for the four most 
significant parameters. Therefore, this example shows that 
while the rank is convenient to use, it cannot be used as 
the sole arbiter in concluding the significance of a 
parameter’s impact. 

After determining the critical parameters, the task of 
choosing the final parameter values is simplified since 
only the values for the critical parameters need to be 
chosen carefully. We recommend performing iterative sets 
of sensitivity analyses so that the exact interaction between 
critical parameters can be accounted for when choosing 
the final values of the critical parameters. To summarize,



 

Table 6. Plackett and Burman design results for all processor parameters; ranked by significance and 
sorted by the sum of ranks. 

 
Parameter gzip vpr-Place vpr-Route gcc mesa art mcf equake ammp parser vortex bzip2 twolf Sum 

ROB Entries 1 4 1 4 3 2 2 3 6 1 4 1 4 36 
L2 Cache Latency 4 2 4 2 2 4 4 2 13 3 2 8 2 52 
Branch Predictor 2 5 3 5 5 27 11 6 4 4 16 7 5 100 

Int ALUs 3 7 5 8 4 29 8 9 19 6 9 2 9 118 
L1 D-Cache Latency 7 6 7 7 12 8 14 5 40 7 5 6 6 130 

L1 I-Cache Size 6 1 12 1 1 12 37 1 36 8 1 16 1 133 
L2 Cache Size 9 35 2 6 21 1 1 7 2 2 6 3 43 138 

L1 I-Cache Block Size 16 3 20 3 16 10 32 4 10 11 3 22 3 153 
Mem Latency, First 36 25 6 9 23 3 3 8 1 5 8 5 28 160 

LSQ Entries 12 14 9 10 13 39 10 10 17 9 7 4 10 164 

Speculative Branch Update 8 17 23 28 7 16 39 12 8 20 22 20 17 237 
D-TLB Size 20 28 11 23 29 13 12 11 25 14 25 11 24 246 

L1 D-Cache Size 18 8 10 12 39 18 9 36 32 21 12 31 7 253 
L1 I-Cache Assoc 5 40 15 29 8 34 23 28 16 17 15 9 21 260 
FP Mult Latency 31 12 22 11 19 24 15 23 24 29 14 23 19 266 

Memory Bandwidth 37 36 13 14 43 6 6 29 3 12 19 12 38 268 
Int ALU Latency 15 15 18 13 41 22 33 14 30 16 41 10 16 284 

BTB Entries 10 24 19 20 9 42 31 20 22 19 20 17 34 287 
L1 D-Cache Block Size 17 29 34 22 15 9 24 19 28 13 32 28 26 296 

Int Div Latency 29 10 26 16 24 32 41 32 20 10 10 43 8 301 

Int Mult/Div Units 14 20 29 31 10 23 27 24 33 36 18 26 15 306 
L2 Cache Assoc 23 19 14 19 32 28 5 39 37 18 42 21 12 309 
I-TLB Latency 33 18 24 18 37 30 30 16 21 32 11 29 18 317 

Fetch Queue Entries 43 13 27 30 26 20 18 37 9 25 23 34 14 319 
Branch MPred Penalty 11 23 42 21 6 43 20 34 11 22 39 37 23 332 

FP ALUs 34 11 31 15 34 17 40 22 26 37 13 42 13 335 
FP Div Latency 22 9 35 17 30 21 38 15 43 38 17 39 11 335 
I-TLB Page Size 42 39 8 37 36 40 7 17 12 26 28 14 39 345 

L1 D-Cache Assoc 13 38 17 34 18 41 34 33 14 15 35 15 42 349 
I-TLB Assoc 24 27 37 25 17 31 42 13 29 30 21 33 22 351 

L2 Cache Block Size 25 43 16 38 31 7 35 27 7 35 38 13 40 355 
BTB Assoc 21 21 36 32 11 33 17 31 34 43 27 35 25 366 

D-TLB Assoc 40 32 25 26 22 35 26 26 18 33 26 30 35 374 
FP ALU Latency 32 16 38 41 38 11 22 30 23 27 30 40 29 377 

Memory Ports 39 31 41 24 27 15 16 41 5 42 29 41 27 378 

I-TLB Size 35 34 28 35 20 37 19 18 31 34 34 27 31 383 
Dummy Parameter #2 27 42 21 39 35 14 13 35 41 28 43 18 30 386 

FP Mult/Div Units 41 22 43 40 40 19 28 38 27 31 31 19 20 399 
Int Mult Latency 30 41 39 36 14 26 29 21 15 41 37 32 41 402 
FP Sqrt Latency 38 30 40 33 33 5 25 42 42 24 24 38 37 411 

L1 I-Cache Latency 26 26 32 42 28 38 21 40 38 40 36 25 33 425 
RAS Entries 28 33 33 27 42 25 36 25 39 39 33 36 32 428 

Dummy Parameter #1 19 37 30 43 25 36 43 43 35 23 40 24 36 434 

 
we recommend the following steps when choosing the 
final simulation parameter values: 
 

1) Determine the critical processor parameters using 
a Plackett and Burman design.  
a) Choose low and high values for each of the 

parameters. 
b) Run and analyze the PB simulations to 

determine the critical parameters. 
2) Iteratively perform sensitivity analyses for each 

critical parameter using the ANOVA technique. 
3) Choose final values for the critical parameters 

based on the results of the sensitivity analyses.  
4) Choose the final values for the non-critical 

parameters based on commercial processor values, 
or some other appropriate source. 

4.2. Benchmark Selection 
 

Just as a poorly chosen set of parameter values can 
drastically affect the performance results, a poorly chosen 
set of benchmarks may not accurately depict the true 
performance of the processor or enhancement. For 
instance, if the set of benchmarks was extremely memory-
intensive, then an optimization to the memory hierarchy 
(e.g. prefetching) will overestimate the performance of 
that optimization across the range of benchmarks. 
However, if the user simply simulates all of the 
benchmarks from a benchmark suite, then he/she sacrifices 
a more complete exploration of the design space by 
simulating redundant benchmarks. Therefore, for accuracy 
and efficiency reasons, it is important for the user to 
simulate a set of benchmarks that are distinct, but that are



 

Table 7. Euclidean distance between benchmark vectors, based on parameter ranks in Table 6. 
 

 gzip vpr-Place vpr-Route gcc mesa art mcf equake ammp parser vortex bzip2 twolf 

gzip 0.0 89.8 81.1 81.9 62.0 113.5 109.6 79.5 111.7 73.6 92.0 78.1 85.5 
vpr-Place 89.8 0.0 98.9 63.7 94.0 102.8 110.9 84.7 118.1 89.7 68.5 111.4 35.2 
vpr-Route 81.1 98.9 0.0 71.7 98.5 100.4 75.5 73.3 91.7 56.4 79.2 45.7 96.6 

gcc 81.9 63.7 71.7 0.0 90.9 92.6 94.5 63.6 98.5 65.0 54.6 88.8 67.3 
mesa 62.0 94.0 98.5 90.9 0.0 120.9 109.9 81.8 100.2 88.9 87.8 94.1 91.7 
art 113.5 102.8 100.4 92.6 120.9 0.0 98.6 96.3 105.2 94.4 92.7 102.5 105.2 
mcf 109.6 110.9 75.5 94.5 109.9 98.6 0.0 104.9 94.8 87.6 101.3 80.0 111.1 

equake 79.5 84.7 73.3 63.6 81.8 96.3 104.9 0.0 98.4 77.1 67.8 76.1 86.5 
ammp 111.7 118.1 91.7 98.5 100.2 105.2 94.8 98.4 0.0 91.1 98.8 92.7 120.0 
parser 73.6 89.7 56.4 65.0 88.9 94.4 87.6 77.1 91.1 0.0 77.4 62.9 89.7 
vortex 92.0 68.5 79.2 54.6 87.8 92.7 101.3 67.8 98.8 77.4 0.0 94.8 73.1 
bzip2 78.1 111.4 45.7 88.8 94.1 102.5 80.0 76.1 92.7 62.9 94.8 0.0 107.9 
twolf 85.5 35.2 96.6 67.3 91.7 105.2 111.1 86.5 120.0 89.7 73.1 107.9 0.0 

 
representative of the range of benchmarks. 

However, determining if two benchmarks are similar is 
difficult because benchmarks can be classified in many 
different ways (by application, by relative use of integer or 
floating-point operations, by processing time versus 
memory usage, etc.). Therefore, as an alternative 
classification that may be more relevant to computer 
architects, we propose that benchmarks be classified by 
their effect on the processor. Under this method of 
classification, two benchmarks are similar if they stress the 
same components of the processor to similar degrees. 

To calculate the similarity between two benchmarks, 
we treat the rank of each parameter as an element of a 
vector. Therefore, a benchmark’s vector represents the 
ranks of all parameters. To determine how similar two 
benchmarks were, we computed the Euclidean distance 
between the two vectors as follows: 
 
Dist = [(x1-y1)

2 + (x2-y2)
2 + … + (xn-1-yn-1)

 2 + (xn-yn)
 2]  ½ 

 
where n is the number of parameters and X = [x1, x2, … , 
xn-1, xn] and Y = [y1, y2, … , yn-1, yn] are the vectors that 
represent ranks of the parameters in benchmarks X and Y, 
respectively. The distance between the two vectors 
measures how similarly the two benchmarks affect the 
processor. Obviously, the smaller the distance between the 
vectors, the greater the similarity. For example, the 
distance between gzip and vpr-Place, using the ranks from 
Table 6, is as follows: 
 
Dist = [(1-4) 2 + (4-2) 2 + … + (28-33)2 + (19-37)2] ½  

  = [8058]  ½ = 89.8 
 

Benchmarks are similar if their distance is below some 
user-defined similarity threshold. Therefore, by calculating 
the similarity between all pairs of benchmarks in a 
benchmark suite and using the similarity threshold, the 
user can subjectively decide which benchmarks are 
similar. Table 7 shows the result of comparing all pairs of 

benchmarks using the ranks from Table 6. 
In this example, if the user-defined similarity threshold 

was arbitrarily set to 63.2 (i.e. the square root of 4000), 
any pair of benchmarks that had a distance less than 63.2 
could be considered similar. The bold entries in Table 7 
correspond to benchmark pairs whose distances are less 
than the similarity threshold. Table 8 groups benchmarks 
that are similar together in the same row. 

 
Table 8. Benchmarks grouped by their effect on 

the processor for an arbitrary similarity threshold 
of 63.2. 

 
Group Benchmarks 

I gzip, mesa 
II vpr-Place, twolf 
III vpr-Route, parser, bzip2 
IV gcc, vortex 
V art 
VI mcf 
VII equake 
VIII ammp 

 
It is important to note that the classification in Table 8 

represents only one possible outcome of classifying these 
benchmarks. It is also important to realize that key 
metrics, such as IPC and miss rates, could be very 
different within a group. However, since the purpose of 
this sub-section was to introduce an alternative method of 
classifying benchmarks (based on their effect on the 
processor), it is left to the user to set the similarity 
threshold, to group the benchmarks, and to decide which 
benchmarks to select based on this method of 
classification and potentially, other metrics.  
 
4.3. Analysis of Processor Enhancements 
 

In many computer architecture papers, analyzing the



 

Table 9. Plackett and Burman design results for all processor parameters when using Instruction 
Precomputation; ranked by significance and sorted by the sum of ranks. 

 
Parameter gzip vpr-Place vpr-Route gcc mesa art mcf equake ammp parser vortex bzip2 twolf Sum 

ROB Entries 1 4 1 4 3 2 2 3 6 1 4 1 4 36 
L2 Cache Latency 4 2 4 2 2 4 4 2 13 3 2 8 2 52 
Branch Predictor 2 5 3 5 5 28 11 8 4 4 16 7 5 103 

L1 D-Cache Latency 7 6 5 7 11 8 14 5 40 7 5 4 6 125 
L1 I-Cache Size 5 1 12 1 1 12 38 1 36 8 1 15 1 132 

Int ALUs 6 8 8 9 8 29 9 13 20 6 9 3 9 137 
L2 Cache Size 9 35 2 6 22 1 1 6 2 2 6 2 43 137 

L1 I-Cache Block Size 15 3 20 3 14 10 32 4 10 11 3 20 3 148 
Mem Latency, First 35 25 6 8 18 3 3 7 1 5 7 6 27 151 

LSQ Entries 13 14 9 10 15 40 10 9 17 9 8 5 10 169 

D-TLB Size 21 28 11 24 25 13 12 10 25 14 25 10 24 242 
Speculative Branch Update 8 20 25 29 7 16 39 11 8 20 21 22 19 245 

L1 I-Cache Assoc 3 41 15 28 6 34 23 28 16 17 11 9 21 252 
L1 D-Cache Size 18 7 10 12 42 19 8 35 32 21 13 32 7 256 
FP Mult Latency 31 12 22 11 19 24 15 22 24 28 14 24 18 264 

Memory Bandwidth 33 36 13 14 43 6 6 31 3 12 20 11 38 266 
BTB Entries 10 23 19 20 9 41 31 20 22 19 19 16 34 283 

Int ALU Latency 16 15 18 13 40 22 33 14 31 16 41 12 16 287 
L1 D-Cache Block Size 17 30 34 22 16 9 24 19 26 13 33 25 26 294 

Int Div Latency 30 10 26 17 24 33 40 33 19 10 10 41 8 301 

L2 Cache Assoc 23 19 14 19 33 27 5 39 37 18 42 21 12 309 
Int Mult/Div Units 14 21 30 31 12 23 27 23 33 37 18 27 15 311 

I-TLB Latency 32 17 24 18 34 30 30 16 21 33 12 29 17 313 
Fetch Queue Entries 43 13 27 30 23 20 19 37 9 25 23 34 14 317 

Branch MPred Penalty 11 24 41 21 4 43 20 32 11 22 39 35 23 326 

FP Div Latency 20 9 36 16 28 21 37 15 43 38 17 38 11 329 
FP ALUs 34 11 31 15 38 17 41 24 27 36 15 43 13 345 

I-TLB Page Size 42 38 7 38 39 39 7 17 12 26 28 14 39 346 
L1 D-Cache Assoc 12 39 17 35 17 42 34 34 14 15 36 17 42 354 

L2 Cache Block Size 25 43 16 37 31 7 35 27 7 35 38 13 40 354 

I-TLB Assoc 26 27 38 25 20 31 42 12 29 30 22 33 22 357 
BTB Assoc 22 18 35 32 10 32 17 30 34 43 27 36 25 361 

D-TLB Assoc 40 32 23 26 27 35 25 26 18 32 26 28 35 373 
Memory Ports 39 31 39 23 26 15 16 40 5 42 30 40 29 375 

FP ALU Latency 37 16 37 41 37 11 21 29 23 27 29 42 28 378 

I-TLB Size 36 34 28 34 21 37 18 18 30 34 34 30 32 386 
Dummy Parameter #2 28 42 21 39 32 14 13 36 42 29 43 18 30 387 

Int Mult Latency 29 40 42 36 13 26 29 21 15 41 35 31 41 399 
FP Mult/Div Units 41 22 43 40 41 18 28 38 28 31 31 19 20 400 
FP Sqrt Latency 38 29 40 33 35 5 26 43 41 24 24 39 37 414 

RAS Entries 27 33 33 27 36 25 36 25 39 40 32 37 31 421 
L1 I-Cache Latency 24 26 32 42 29 38 22 41 38 39 37 26 33 427 

Dummy Parameter #1 19 37 29 43 30 36 43 42 35 23 40 23 36 436 

 
effect of a processor enhancement involves examining 
only individual metrics (e.g. speedup, miss rate, etc.). 
While these metrics may provide some insight into the 
effect of the enhancement on key hardware structures, 
identifying all of the important metrics and trying to piece 
them back together to form the big picture as to how the 
enhancement actually affects the processor is extremely 
difficult, if not impossible. Therefore, to improve the data 
analysis methodology, we describe a method that 
simultaneously considers the effect of an enhancement on 
all of the processor’s parameters, thereby analyzing the 
enhancement’s effect at a higher-level. 

Our proposed method uses the PB design to analyze 
the effect on the processor’s parameters before and after 
the application of the enhancement. By using this method, 
the user can determine the enhancement’s effect on the 

processor’s parameters and/or determine the significance 
of the enhancement’s parameters. 

By comparing the sum-of-ranks for each parameter 
before and after the application of the enhancement, the 
user can determine how the enhancement actually affects 
the processor. For example, if the L1 D-Cache size and 
associativity sharply drop in significance due to an 
enhancement (i.e. those two parameters are less of a 
bottleneck with the enhancement than without it), it is 
reasonable to conclude that that particular enhancement 
does a good job of improving memory performance. 
However, the particular enhancement also may cause a 
sharp rise in the significance of the memory ports and the 
number of LSQ entries. Therefore, it also would be 
reasonable to conclude that this particular enhancement 
improves the memory performance at the cost of increased 



 

pressure on the memory ports and the LSQ. 
To illustrate the efficacy, utility, and mechanics of this 

method, we analyze the effect that instruction 
precomputation [31] has on the processor. Instruction 
precomputation is similar to value reuse [27] in that it 
dynamically removes redundant computations from the 
pipeline by using a cached output value instead of 
computing the result. The key difference between the two 
techniques is that instruction precomputation uses 
profiling to statically identify the highest frequency 
redundant computations instead of identifying them at run-
time. In instruction precomputation, the redundant 
computations are loaded into the precomputation table 
before the program begins and are never updated. By 
contrast, value reuse continually updates the value reuse 
table with the most current computations. 

Table 9 shows the effect of instruction precomputation 
with a 128-entry precomputation table on the processor. 
While Table 9 represents the “after”  case, Table 6 
represents the “before”  case. 

A comparison of the two tables yields two conclusions 
about the effect that instruction precomputation has on the 
processor. First of all, the same parameters that were 
significant for the base processor are also significant for 
the processor with instruction precomputation. Instruction 
precomputation changes only the relative ordering of the 
significant parameters, but does not change which 
parameters have the greatest significance. Secondly, of the 
significant parameters, the parameter that has the biggest 
change in its overall effect (i.e. biggest change in the sum 
of ranks) is the number of integer ALUs. This result is 
expected since most of the instructions that instruction 
precomputation eliminates would have executed on an 
integer ALU. In other words, by using instruction 
precomputation, the impact of the number of integer ALUs 
on the processor’s performance decreases in significance. 

In conclusion, this method of analyzing simulation 
results has a few advantages over commonly-used 
approaches that only look at a single metric. First, the 
exact effect that an enhancement has on the parameters 
can be determined. This information is especially useful in 
finding parameters that would seem to be unaffected by an 
enhancement, but are in actuality significantly affected. 
This information also can point the user to areas in the 
processor that may require a more detailed analysis. 
Second, the user can determine the most significant 
enhancement parameters and how their ranks compare to 
ranks of the processor parameters. This comparison allows 
the user to make design decisions as to how to maximize 
the performance while minimizing the enhancement’s 
cost. Finally, using this method gives the analysis a 
statistically solid foundation that improves the overall 
quality of the analysis, in addition to improving the 
confidence in the final results and conclusions. 
 

5. Related Work 
 

While there are several studies that are related to this 
work, we did not find any that directly focused on 
simulation methodology. Most of the related work focused 
on either simulator validation, decreasing the simulation 
time by modeling the processor’s performance with 
statistical methods, or improving the accuracy and 
precision of simulation results. Other previous work 
performed sensitivity analyses of key processor parameters 
or described a method for classifying benchmarks. This 
paper builds upon previous work by adding statistical rigor 
to the simulation setup and analysis phases. 

Simulator Validation, Processor Modeling, and 
Improving Simulator Accuracy – The authors of several 
papers described their simulator validation experiences. 
Black and Shen [2] described a method of validation that 
iteratively improves the cycle count accuracy of the 
performance model, as compared to the actual processor. 
Their results show that errors were still present in their 
simulation model, even after a long period of debugging, 
and that those errors could be revealed only after 
comparing the performance model to the actual processor. 
Desikan et al [5] measured the difference in the execution 
times between the Alpha version of the SimpleScalar 
simulator and the Alpha 21264. They found that 
simulators that model a generic machine (such as 
SimpleScalar) generally reported higher IPCs than 
simulators that were validated against a real machine. On 
the other hand, unvalidated simulators that targeted a 
specific machine usually underestimated the 
performance. Gibson et al [8] described the types of errors 
that were present in the FLASH simulator when compared 
to the implemented FLASH processor. Their results 
showed that most simulators can accurately predict the 
architectural trends if all of the important components 
have been accurately modeled. Their results also showed 
that the margin of error (the percentage difference in the 
execution time) of some simulators was more than 30%, 
which is higher than the speedups that are often reported 
for architectural enhancements. 

Finally, Glamm and Lilja [10] verified the functional 
correctness of a simulated ISA by comparing the simulated 
and actual processor states after each instruction. A 
difference in the states revealed the presence of an error. 

A few papers described statistical methods for reducing 
the complexity of a simulator and, thereby, the resulting 
simulation time. Noonburg and Shen [20] described a 
method that uses a program trace along with probabilistic 
models to estimate the performance of the processor given 
a particular processor configuration. By using probabilities 
to account for how long the instructions are in a particular 
state, they were able to achieve estimates of performance 
ranging from 1% to 10% of the processor’s actual 
performance (as measured by the IPC) in a fraction of the 



 

time. The HLS simulator [22] uses statistical profiles and 
symbolic execution to estimate processor performance. 
The statistical profile stores program statistics (basic block 
sizes, etc.) while the symbolic code transforms the 
instruction stream into a control-flow graph of blocks that 
contain the necessary resource requirements to execute 
that block. The HLS simulator estimates the execution 
time to within 10% of SimpleScalar’s execution time. 

Cain et al [4] measured the effects of the operating 
system and I/O on the simulator’s accuracy. They 
integrated SimOS-PPC with SimMP, a multiprocessor 
simulator. Their results showed that not including an 
operating system could introduce errors as high as 100% 
in the simulated performance. Generally, their results 
demonstrated the need to integrate an operating system 
into the simulator for increased accuracy and precision. 

Effect of Key Processor Parameters – Skadron et al 
[26] analyzed the trade-offs between the instruction-
window size, branch prediction accuracy, and the sizes of 
the L1 caches. Their paper performed a set of detailed 
sensitivity analyses that examined the IPC for different 
instruction-window sizes, data and instruction cache sizes, 
and different branch prediction accuracies using the 
integer benchmarks of the SPEC 95 benchmark suite. 
While their results were very detailed and had several 
meaningful conclusions, they did not determine the 
important parameters and interactions before they 
performed their sensitivity analyses. As a result, without 
first quantifying the effect of the most significant 
interactions, the conclusions that were drawn from these 
results cannot be taken completely at face value. 

Benchmark Classification – Eeckhout et al [7] used 
statistical data analysis techniques such as principal 
component analysis and cluster analysis to determine the 
statistical similarity of benchmark and input set pairs. To 
quantify the similarity, they used metrics such as the 
instruction mix, the branch prediction accuracy, the data 
and instruction cache miss rates, the number of 
instructions in a basic block, and the maximum amount of 
parallelism inherent to the benchmark. The key difference 
between their method of grouping benchmarks and our 
method is that their method is predicated on defining a set 
of metrics that encompasses all of the key factors that 
affect the performance. The deficiency of this approach is 
that it assumes that all significant metrics have been 
incorporated into the statistical design without the benefit 
of simulations. However, since it is possible for two 
unrelated processor parameters to interact, picking metrics 
to identify the effect of either parameter does not 
necessarily cover the effect of their interaction. Our 
approach, on the other hand, does not make that 
assumption; instead, all parameters are weighted equally. 
Finally, our method can seamlessly classify benchmarks 
based on other metrics, such as the power consumption, 
for instance, while their method requires a redefinition of 

the metrics. 
Giladi and Ahituv [9] identified the redundant 

benchmarks in the SPEC 92 benchmark suite. A redundant 
benchmark is one that, if removed, does not significantly 
change the SPEC number for that benchmark suite. Their 
results show that 13 of the 20 benchmarks in the SPEC 92 
suite were redundant. Their method of determining 
redundant benchmarks is significantly different from our 
method for at least two reasons. First of all, their method is 
completely based on approximating the SPEC number. 
Secondly, since the SPEC number is calculated by 
normalizing the execution times to a base system, there is 
no direct connection to the effect that each benchmark has 
on the processor. By contrast, our method focuses 
exclusively on the benchmark’s effect on the processor.  
 
6. Conclusion 
 

Computer architects heavily rely on simulators when 
designing processor architectures or when evaluating the 
performance of processor enhancements. However, due to 
a lack of a formalized methodology, most current methods 
approach simulation methodology in an ad-hoc fashion. As 
a result, unnecessary errors arise, such as using poorly 
chosen processor parameter values or sets of benchmark 
programs. Furthermore, without a formalized 
methodology, computer architects may not glean as much 
information as possible from their simulation results. 
Finally, by adding statistical rigor to their methodology, 
computer architects can have more confidence in their 
simulation results.  

As a first step in developing a formalized simulation 
methodology, this paper describes three methods of 
improving the simulation methodology in computer 
architecture research. The first two methods seek to 
improve the simulation setup while the third seeks to 
improve the data analysis. The first method focuses on 
how the processor parameter values are chosen. In 
particular, this method advocates using a Plackett and 
Burman (PB) design to determine the most important 
parameters. The values for these key parameters need to be 
chosen with care since the specific value chosen can 
seriously affect the performance results. 

The second method focuses on benchmark selection. 
Our proposed method groups benchmarks together if they 
have a similar effect on the processor. Two benchmarks 
have similar effects on the processor if their processor 
parameters have similar ranks. As with the processor 
parameter selection, a PB design is used to determine the 
effect that a benchmark has on the processor. 

Finally, the last method focuses on improving the data 
analysis in the post-simulation phase. This method uses a 
PB design to rank the parameters before and after an 
enhancement is added to the processor. By comparing the 
before and after ranks, the effect that the enhancement has 



 

on the processor can be readily determined. 
In conclusion, there is plenty of room for improvement 

with the current simulation methodology. Adopting some 
or all of the methods described in this paper can 
significantly improve the quality of, and confidence in, 
simulation results. 
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