
Impr oving Processor Per formance by Simplifying and Bypassing Tr ivial
Computations

Joshua J. Yi and David J. Lilja
Department of Electrical and Computer Engineering

University of Minnesota - Twin Cities
{ jjyi, lilja} @ece.umn.edu

Abstract
During the course of a program’s execution, a

processor performs many trivial computations; that is,
computations that can be simplified or where the result is
zero, one, or equal to one of the input operands. This
paper shows that, despite compiling a program with
aggressive optimizations (-O3), approximately 30% of all
arithmetic instructions, which account for 12% of all
dynamic instructions, are trivial computations. The
amount of trivial computation is not heavily dependent on
the program’s specific input values. Our results show that
eliminating trivial computations dynamically at run-time
yields an average speedup of 8% for a typical processor.
Even for a very aggressive processor (i.e. one with no
functional unit constraints), the average speedup is still
6%. It also is important to note that the area cost (i.e.
hardware) required to dynamically detect and eliminate
these trivial computations is very low, consisting of only a
few comparators and multiplexers.

1 Introduction

Many programs have a significant amount of trivial
computation due to the way they are written and
compiled. A trivial computation is an instruction whose
output can be determined without having to perform the
specified computation by either converting the operation
to a less complex one or by determining the result
immediately based on the value of one or both of the
inputs. An example of the former is a multiply operation
where one of the input operands has a value of two. In this
case, the multiply instruction can be converted to a shift-
left instruction. An example of the latter type is an add
instruction where one of the input operands is zero. In this
case, the result is the value of the other input operand.

While it seems as though an optimizing compiler
should be able to remove many of these trivial
computations, it is unable to do so unless the value of the
input operands is known at compile time. Furthermore, the
compiler may use trivial computations, such as 0 + 0, for
initialization purposes. This paper shows that, due to these
two factors, trivial computations can be a significant part

of the program’s overall execution time. Therefore,
dynamically eliminating these trivial computations could
reduce the program’s execution time.

This paper makes the following contributions:

1. It quantifies the amount of trivial computation that
is present in programs from the SPEC 95, SPEC
2000, and MediaBench [5] benchmark suites and
shows that the amount of trivial computation is
independent of the specific input values.

2. It determines the speedups that can be obtained by
dynamically eliminating trivial computations.

The remainder of this paper is organized as follows:

Section 2 quantifies the amount of trivial computation that
exists in typical programs, Section 3 presents the speedup
results achieved by eliminating these trivial computations,
Section 4 describes some related work, and Section 5
summarizes our results and conclusions.

2 Types and Amounts of Trivial Computation

In this paper we identify two classes of trivial
computations, those that can be bypassed and those that
can be simplified. Table 1 shows the types of
computations that are defined as trivial in this paper. The
first column shows the type of operation while the second
column shows how the result is normally computed. The
third and fourth columns show which trivial computations
can be bypassed and simplified, respectively.

Most of these trivial computations are straightforward
with the exception of square root. For a square root, if the
value of X is an even power of 2 (e.g. 4, 16, 64), then the
result can be computed by halving the value in the
exponent field. As a result, the exponent needs only to be
shifted to the right by one bit. For example, the exponent
for 16 is 0100. By applying this simplification, 0100 is
right-shifted by 1 to produce 0010. Using this new
exponent, the square root of 16 is then 1 * 22, or 4.

We classify the computations in the fourth column as
trivial because their operation can be simplified. While
those trivial computations cannot be fully bypassed, they
can use less complex, lower latency hardware instead.

Figure 1. Percentage of trivial computations per instruction type and per total number of dynamic

instructions for the SPEC and MediaBench benchmarks

Operation Normal Bypassable Simplifiable

Add X+Y X,Y=0
Subtract X–Y Y=0; X=Y

Multiply X*Y X,Y=0
X,Y=

Power of 2
Divide X÷Y X=0; X=Y Y=Power of 2
AND,
OR,
XOR

X&Y,
X|Y,
X⊕Y

X,Y=
{ 0,0xffffffff} ;

X=Y

Logical
Shift

X<<Y,
X>>Y

X,Y = 0

Arithmetic
Shift

X<<Y,
X>>Y

X,Y=
{ 0,0xffffffff}

Absolute
Value

|X|
X=

{ 0, Positive}

Square
Root X X=0

X=Even
Power of 2

Table 1. Trivial computations

Figure 1 shows the amount of trivial computation that

is present in the benchmark programs from the SPEC 95,
SPEC 2000, and MediaBench benchmark suites that we
used in this study. Each pair of results shows the
percentage of trivial computations that are present for that
instruction type. The “Total” bars show the percentage of
the total instructions that are trivial computations, over all
instruction types.

These results show that trivial computations account
for 12.89% and 5.92% of the total instructions in the
SPEC and MediaBench benchmarks, respectively.

Figure 1 shows that almost all instruction types have a
significant percentage of trivial computations. However, a
high percentage does not necessarily mean that those
instructions will have a significant impact on the
program’s overall execution time since they could account
for a very small percentage of the total executed
instructions. For example, nearly 100% of the absolute

value instructions (FABS) are trivial, but they account for
only 0.04% of the total instructions executed.

To determine whether the trivial computations are a
result of the benchmark itself, or of the benchmark’s input
set, we profiled the same benchmarks with another input
set. The results from the second input set were very
similar to the results from the first [11]. This result
indicates that trivial computations are primarily due to the
benchmark programs themselves and not due to the
specific values of their inputs.

3 Simulation Results

3.1 Benchmarks and Processor Configuration

The results in this section show the speedups that can
be obtained by bypassing or simplifying trivial
computations. These results are based on simulations
performed by using a modified version of the sim-
outorder superscalar processor simulator from the
SimpleScalar tool suite [1].

All of the benchmarks were compiled at optimization
level -O3 using the SimpleScalar version of gcc. To
control the execution time, reduced input sets were used
for some of the SPEC 2000 benchmarks. Benchmarks that
use a reduced input set exhibit behavior similar to when
the benchmark is executed using the reference input [4].

The base machine was a 4-way issue processor with 2
integer and 2 floating-point ALUs; 1 integer and 1
floating-point multiply/divide unit; a 64 entry RUU; a 32
entry LSQ; and 2 memory ports. The L1 D and I caches
were set to 32KB, 32B blocks, 2-way associativity, and a
1 hit cycle latency. The L2 cache was set to 256KB, 64B
blocks, 4-way associativity, and a 12 cycle hit latency.
The memory latency of the first block was 60 cycles while
each following block took 5 cycles. The branch predictor
was a combined predictor with 8K entries. These
parameter values are similar to those found in the Alpha
21264 [3] and the MIPS R10000 [10].

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

ADD
SUB

M
ULT

DIV
AND OR

XOR
SLL

SRL
SRA

FADD
FSUB

FM
UL

FDIV
FABS

FSQRT
Tot

al

I n s t r u c t i o n T y p e

P
er

ce
nt

 T
ri

vi
al

 P
er

 I
ns

tr
uc

tio
n

T
yp

e

S P E C M e d i a b e n c h

Figure 2. Speedup due to trivial computation bypass/simplification for the SPEC benchmarks

Figure 3. Speedup due to trivial computation bypass/simplification for the MediaBench benchmarks

The latencies for the integer functional units were 1, 3,

and 19 cycles for the integer ALU, multiplier, and divider,
respectively, while the latencies for the floating-point
units were 2, 4, 12, and 24 cycles for the floating-point
ALU, multiplier, divider, and square root unit,
respectively.

3.2 Discussion and Analysis

The key point that separates this technique from other
microarchitectural mechanisms is that in this technique
only a single input operand (the trivial one) needs to be
available for a non-speculative result to be generated. For
example, in X * 0, the result can be computed non-
speculatively as soon as 0 is available. This key point
obviously has an important performance impact in that it
allows the instruction to “execute” sooner than would
normally be possible. Therefore, the speedups obtained
from this technique are due to earlier scheduling of
instructions, decreasing the number of resource conflicts,
and reducing the latency of trivial computations.

Figures 2 and 3 show the speedups for the SPEC and
MediaBench benchmarks, respectively. The speedup
ranges from 1.64% (gzip) to 27.36% (mesa), with an
execution time-weighted average of 8.84% for the SPEC
benchmarks. For the MediaBench benchmarks, the
speedup ranges from 2.97% (epic-Compress) to 13.97%
(epic-Uncompress), with an average of 4.86%. The
average speedup across all benchmarks is 8.22%. These

results show that bypassing and simplifying trivial
computations can produce significant speedups.

To determine the effect of the functional unit
availability on the speedup, we varied the number of
functional units. Due to space limitations, these results are
not presented. However, even in the most unrealistic case
in which the base processor has 4 of each type of
functional unit, the speedup results are still quite good,
with an average of 6.5% speedup for the SPEC
benchmarks, 4.5% for the MediaBench benchmarks, and
6.2% overall [11]. This result demonstrates that the
speedups shown in Figures 2 and 3 are not due primarily
to the trivial computation elimination hardware acting like
a pseudo-functional unit, but rather are due to the latency
reduction and early instruction scheduling allowed by
simplifying and bypassing the trivial computations.

4 Related Work

After extensive searches through several indexes,
digital libraries, and the web, we found only a single
publication directly on trivial computation [8]. In this
paper, Richardson restricted the definition of trivial
computations to certain multiplications (by 0, 1, and –1),
divisions (X ÷ Y with X = { 0, Y, -Y}), and square roots of
0 and 1. The two key differences between this previous
work and our current study are the types of benchmarks
that were used, and the scope of the definition of trivial
computations. The first difference is that Richardson

0

5

1 0

1 5

2 0

2 5

3 0

go

m88
ks

im gc
c

co
mpr

es
s li

ijp
eg

pe
rl-

Ju
m

ble

pe
rl-

Pr
im

es
gz

ip

vp
r-P

lac
e

vp
r-R

ou
te

m
es

a ar
t

m
cf

eq
ua

ke
am

m
p

pa
rse

r

vo
rte

x
tw

olf

SP
EC

SP
EC +

 M
B

B e n c h m a r k

S
pe

ed
up

 (
%

)

0

2

4

6

8

1 0

1 2

1 4

ad
pc

m
-D

ec
od

e

ad
pc

m-E
nc

od
e

ep
ic-

Com
pr

es
s

ep
ic-

Unc
om

pr
es

s

g7
21

-D
ec

od
e

g7
21

-E
nc

od
e

mpe
g2

-E
nc

od
e

mpe
g2

-D
ec

od
e

M
ed

iaB
en

ch

SPE
C +

 M
B

B e n c h m a r k

S
p

ee
d

u
p

 (
%

)

studied only floating-point benchmarks (SPEC 92 and
Perfect Club) while we studied a mix of integer, floating-
point, and multimedia benchmarks. The second difference
is that Richardson restricted the definition of trivial
computations to the above 8 types while we defined the 26
types shown in Table 1. Not surprisingly, as a result of
both differences, the average speedup of 2% that he
reported was much lower than our 8% when comparing
similar processor configurations. Richardson asserted that
the lack of previous work on trivial computation was not
due to its novelty, but due to a lack of knowledge as to
how often trivial computations would occur.

While there has been a definite lack of published
material on trivial computation, several papers have
described the related technique of value reuse [2, 6, 7, 9].
With value reuse, an on-chip table dynamically caches the
opcode, input operands, and result of previously executed
instructions. For each instruction, the processor checks if
the current instruction's opcode and input operands match
a cached entry. If there is a match, the processor reuses the
result that is stored in the table instead of re-executing the
instruction, thus bypassing the execution of the current
instruction.

There are several differences between value reuse and
our approach of bypassing trivial computations. The first
and biggest difference is that value reuse requires the use
of an on-chip table. For example, Molina et al. [6] used a
221KB table to achieve an average speedup of 10%. In
contrast, the trivial computation approach that we propose
uses only a small amount of area (a few comparators and
multiplexors). The second difference is that each
instruction that is bypassed using value reuse had to have
been previously executed at least once. With trivial
computation, in contrast, the instruction can be bypassed
the first time it is encountered. Finally, the last difference
is that for value reuse, both input operands must be
available since they are both needed to access the value
reuse table. Trivial computations, on the other hand, can
be bypassed when only a single input operand is available.
For example, if X * 0 were a frequently occurring
computation, value reuse would need to have both input
operands available before the instruction can be bypassed
while trivial computation would need only the second
input operand (0) to be available.

5 Conclusion

This paper presents a dynamic method of detecting and
eliminating trivial computations to improve processor
performance. A trivial computation is a computation that
can be converted into a faster and less complex one or can
be bypassed completely by setting the output value to
zero, one, or to the value of one of the input operands.
This paper shows that for a set of benchmarks from the
SPEC 95, SPEC 2000, and MediaBench benchmark
suites, a significant percentage of the computations for

each instruction type are trivial and that nearly 12% of the
total dynamic instructions are trivial. The compiler, due to
a lack of run-time information or for initialization reasons,
cannot remove these trivial computations. Furthermore,
this paper demonstrated that the trivial computations are
mainly a function of the benchmark and not of the
benchmark’s input values. Finally, dynamically
eliminating trivial computations, through simplification or
bypass, produced an average speedup of 8.2% for a typical
processor and an average speedup of 6.2% for a processor
without any functional unit constraints.

Acknowledgements

The authors would like to thank Chris Hescott, Baris
Kazar, and Keith Osowski for their helpful comments on
previous drafts of this work.

This work was supported in part by National Science
Foundation grants EIA-9971666 and CCR-9900605, by
IBM, by Compaq's Alpha Development Group, and by the
Minnesota Supercomputing Institute.

References

[1] D. Burger and T. Austin, “The Simplescalar Tool Set,

Version 2.0”, University of Wisconsin Computer Sciences
Department Technical Report 1342.

[2] J. Huang and D. Lilja, "Exploiting Basic Block Locality
with Block Reuse", International Symposium on High
Performance Computer Architecture, 1999.

[3] R. Kessler, E. McLellan, and D. Webb, "The Alpha 21264
Microprocessor Architecture", International Conference
on Computer Design, 1998.

[4] A. KleinOsowski and D. Lilja, " MinneSPEC: A New
SPEC Benchmark Workload for Simulation-Based
Computer Architecture Research", Computer Architecture
Letters, Volume 1, June 2002.

[5] C. Lee, M. Potkonjak, and W. Mangione-Smith,
“MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems”, International
Symposium on Microarchitecture, 1997.

[6] C. Molina, A. Gonzalez, and J. Tubella, "Dynamic
Removal of Redundant Computations", International
Conference on Supercomputing, 1999.

[7] S. Oberman and M. Flynn, "On Division and Reciprocal
Caches", Stanford University Technical Report CSL-TR-
95-666, 1995.

[8] S. Richardson, "Caching Function Results: Faster
Arithmetic by Avoiding Unnecessary Computation",
International Symposium on Computer Arithmetic, 1993.

[9] A. Sodani and G. Sohi, "Dynamic Instruction Reuse",
International Symposium on Computer Architecture, 1997.

[10] K. Yeager, "The MIPS R10000 Superscalar
Microprocessor", IEEE Micro, Vol. 16, No. 2, March-
April 1996, Pages 28-40.

[11] J. Yi and D. Lilja, “ Improving Processor Performance by
Simplifying and Bypassing Trivial Computations”,
University of Minnesota Technical Report: ARCTiC 02-
06, 2002.

