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ABSTRACT
Due to the amount of time required to design a new processor, one 
set of benchmark programs may be used during the design phase 
while another may be the standard when the design is finally 
delivered. Using one benchmark suite to design a processor while 
using a different, presumably more current, suite to evaluate its 
ultimate performance may lead to sub-optimal design decisions if 
there are large differences between the characteristics of the two 
suites and their respective compilers. We call this change across 
time “drift”. To evaluate the impact of using yesterday’s 
benchmark and compiler technology to design tomorrow’s 
processors, we compare common benchmarks from the SPEC 95 
and SPEC 2000 benchmark suites. Our results yield three key 
conclusions. First, we show that the amount of drift, for common 
programs in successive SPEC benchmark suites, is significant. In 
SPEC 2000, the main memory access time is a far more significant 
performance bottleneck than in SPEC 95, while less significant 
SPEC 2000 performance bottlenecks include the L2 cache latency, 
the L1 I-cache size, and the number of reorder buffer entries. 
Second, using two different statistical techniques, we show that 
compiler drift is not as significant as benchmark drift. Third, we 
show that benchmark and compiler drift can have a significant 
impact on the final design decisions. Specifically, we use a one-
parameter-at-a-time optimization algorithm to design two different 
year-2000 processors, one optimized for SPEC 95 and the other 
optimized for SPEC 2000, using the energy-delay product (EDP) 
as the optimization criterion. The results show that using SPEC 95 
to design a year-2000 processor results in an 18.5% larger EDP 
and a 20.8% higher CPI than using the SPEC 2000 benchmarks to 
design the corresponding processor. Finally, we make a few 
recommendations to help computer architects minimize the effects 
of benchmark and compiler drift.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques; I.6 
[Simulation and Modeling]: Model Validation and Analysis, 
Simulation Output Analysis

General Terms
Measurement, Performance

Keywords
Benchmark drift, compiler drift, microprocessor design

1. INTRODUCTION
Due to their tremendous complexity, the time required to design 
next-generation microprocessors presently spans several years. 
However, since processor architects make most of the design 
decisions and trade-offs early in the design cycle when the design 
has the greatest degree of fluidity, and since several years will 
elapse between that point in time and the time when the processor 
is in large-scale production, it is quite likely that the benchmark 
suite that is used to guide the design decisions could be superseded
by its successor. For example, if in 1995, processor architects used 
benchmarks from the SPEC 95 benchmark suite to guide their 
initial design decisions, but that processor was not commercially 
available until mid-2000 (after the introduction of SPEC 2000), 
then, in this example, the architects used benchmarks from the past 
to design a processor for the future. Further exacerbating this 
potential problem are improvements in compiler technology and 
changing benchmark input sets. We coin the term benchmark drift
to describe the phenomenon of time-varying changes in benchmark 
programs due to updating benchmark suites, and analogously, 
compiler drift for compilers. For processor designers, drift may 
result in sub-optimal designs, while drift may affect computer 
architecture research by overweighting or underweighting the 
efficacy of novel enhancements or obscuring important benchmark 
characteristics.

One example of a processor that was affected by benchmark drift –
specifically as a result of changes in the benchmarks’ 
characteristics – was Intel’s Itanium processor. One of the most 
notable features of the Itanium processor is its implementation of 
if-conversion using branch predication, which can reduce the 
average number of cycles needed to execute branch instructions by 
converting hard-to-predict branch instructions into data 
dependences. For the integer benchmarks of the SPEC 2000 
benchmark suite, however, only 7% of the total clock cycles were 
spent processing branch instructions [8]. More generally, as a 
result of the increasing gap between processor and memory speeds 
[25], a higher percentage of the clock cycles are spent servicing 
memory requests instead of processing branch instructions in the 
SPEC 2000 benchmarks, as compared to the SPEC 92 and SPEC 
95 benchmarks. These types of changes in a benchmark’s 
characteristics can contribute to lower-than-expected performance 
when the processor actually ships, as was (at least partially) the 
case for the Itanium processor, since the design was optimized 
based on the characteristics of the older benchmark suite. As this 
example illustrates, benchmark (and compiler) drift is not strictly a 
theoretical, academic problem, but, rather, a bona fide issue that 
can result in adverse outcomes for commercial processors and 
negatively influence the directions of computer architecture 
research.

Despite the importance of this problem, there has been very little 
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research on benchmark and compiler drift. Of the prior work that 
focused on drift, all of them limited their focus to examining select, 
high-level benchmark characteristics (e.g., branch and ILP 
characteristics) instead of quantifying the magnitude of the drift 
and its attendant impact on processor design. While there certainly 
is merit in the quantification of these benchmark-level 
characteristics, myopically examining them without connecting the 
impact of their evolution to processor design and performance 
optimization can, in the worst case, result in processors with sub-
optimal performance, as exemplified by the Itanium.

To address this critical need, this paper is the first, to the best of 
our knowledge, to quantify benchmark and compiler drift and its 
subsequent effect on processor design. Furthermore, this paper 
illustrates and motivates the need to comprehensively study the 
time-evolving characteristics and trends of benchmarks and 
compilers. Specifically, in this paper, to measure the amount of 
benchmark and compiler drift, we first examine the performance 
bottlenecks that are present when running each benchmark, and 
again when later versions of the benchmark and compiler are used. 
By comparing the performance bottlenecks across two versions of 
a benchmark, we can explicitly determine how the performance 
bottlenecks have “migrated” due to drift and why the optimized 
processor configuration changes across benchmark suites. Second, 
we use the analysis-of-variance (ANOVA) statistical design-of-
experiments [15] to build a statistically-based model of benchmark 
and compiler drift. Third, we determine the potential effect that 
benchmark and compiler drift could have on the optimized
processor configuration. More specifically, we compare two 
processors, one that was optimized for the SPEC 95 benchmarks 
when compiled with a circa 1995 compiler and one that was 
optimized for the SPEC 2000 benchmarks when compiled with a 
circa 2000 compiler. To focus on the effect that changing 
benchmark characteristics – and not on the inclusion or exclusion 
of benchmarks – have on benchmark drift, we use only the seven 
benchmarks that are common to both SPEC 95 and SPEC 2000 
suites in this paper. (Note that in this paper when we use the term 
“processor,” we are referring to not only the processor core, but 
also to its memory sub-system. For brevity, in the remainder of the 
paper, the term “processor” also includes its memory sub-system.)

The contributions of this paper are as follows:

1. It identifies and analyzes the problem of drift, 
examines its potential impact on processor design,
and motivates the continued need for the 
comprehensive examination of benchmark and 
compiler trends.

2. It quantifies the amount of benchmark and compiler 
drift that is present across the SPEC 95 and SPEC 
2000 benchmark suites by comparing the 
differences in the sets of performance bottlenecks 
from both benchmark suites, when using circa 1995 
and 2000 compilers. The results clearly show that 
the performance bottlenecks migrate from the 
processor core to levels further into the memory 
sub-system as a result of drift.

3. It builds a statistically-based model of benchmark 
and compiler drift to quantify their individual and 
combined impacts and shows that: A) Benchmark 
drift is more significant than compiler drift and B) 
For some benchmarks, drift has as much impact on 
the CPI as changing the processor configuration 

from a basic 4-way issue processor to an aggressive 
8-way issue processor.

4. It illustrates the surprisingly large effect that drift 
can have on the configuration of the optimized 
processor configuration as determined by each 
benchmark suite and compiler. Specifically, it 
shows that, solely due to benchmark and compiler 
drift, using an older benchmark suite and compiler 
instead of the most current ones degrades the 
performance (CPI) of the optimal processor 
configuration by about 21% and its energy 
efficiency (EDP) by about 19%.

5. It describes a few recommendations that can reduce 
the amount of drift and help computer architects 
account for the potential effects of drift.

In the remainder of this paper, Section 2 describes the simulation 
methodology while Section 3 presents the performance bottleneck 
analysis and its results. Section 4 presents the statistically-based 
model of benchmark and compiler drift while Section 5 presents 
the results of the processor configuration optimization algorithm. 
Section 6 describes a few recommendations to account for and 
minimize the effects of drift, Section 7 describes relevant related 
work, and, finally, Section 8 summarizes the key results and 
concludes.

2. SIMULATION METHODOLOGY
2.1 Benchmark and Input Sets
In this paper, we chose the SPEC benchmarks for two reasons. 
First, this paper focuses on general-purpose computing – to 
produce the broadest possible conclusions – and the de facto
standard for general-purpose computing benchmarks is SPEC.
General-purpose computing benchmarks are particularly interesting 
to analyze from a drift perspective since they represent a wide 
range of applications. Second, since there are multiple generations 
of the SPEC benchmarks and since these benchmarks are relatively 
easy to compile and simulate, choosing them makes it easier to 
characterize the nature and quantify the magnitude of benchmark 
drift.

Table 1. Benchmark type, and its SPEC serial number and 
name in each SPEC benchmark suite 

Benchmark Type SPEC 95 SPEC 2000

swim Floating-Point 102.swim 171.swim
mgrid Floating-Point 107.mgrid 172.mgrid

applu Floating-Point 110.applu 173.applu

gcc Integer 126.gcc 176.gcc

perl/perlbmk Integer 134.perl 253.perlbmk

vortex Integer 147.vortex 255.vortex

apsi Floating-Point 141.apsi 301.apsi

Table 1 lists each benchmark’s type, and its serial number and 
name in SPEC 95 and SPEC 2000. Unless otherwise noted, to 
simulate each benchmark, we used all of its reference input 
sets. In this paper, we consider input set drift to be a part of 
benchmark drift, i.e., we did not decouple the input set from the 
benchmark. As a result, for a particular benchmark, we simulated 
only the input sets that were part of that benchmark’s distribution, 
e.g., primes and scrabbl only for 134.perl and diffmail, 



makerand, perfect, and splitmail only for 253.perlbmk. 
When we tried switching the input sets, only 2 of 7 benchmarks ran 
to completion since the input sets from the other suite required 
code that was not supported in that version of the benchmark. 
Therefore, in the remainder of this paper, the term “benchmark 
drift” implicitly refers to the aggregate “benchmark and input set 
drift”.

2.2 Compilation Methodology
We used f2c to translate the FORTRAN benchmarks to C before 
compiling them with a circa 1995 C compiler. (Section 3.4.1 
characterizes the effect that f2c has on the simulation results.) 
Otherwise, the other compilers that we used were a native circa 
1995 C compiler (gcc 2.6.3), a native circa 2000 C compiler
(DEC cc / Compaq cc V6.3-025), and a native circa 2000 
FORTRAN compiler (Compaq Fortran X5.3-1155). For the SPEC 
2000 benchmarks that were compiled with a circa 2000 compiler, 
we downloaded them from [23].

We chose to use different compilers for two key reasons.  First, 
using different compilers tended to maximize the potential effect of 
compiler drift in the results, which gives us an upper-bound on the 
impact of compiler drift. Second, we observed that processor 
designers often use several different compilers, compiler versions, 
and optimization levels during the design cycle for many reasons, 
including: A) The convenience and familiarity of using legacy 
traces (i.e., traces generated from binaries that were compiled 
several years ago using old compilers), B) The desire to simulate
“vanilla” (unaggressive, microarchitecture-independent) code, C) 
The introduction and availability of new compilers, new compiler 
versions, and new optimizations during the design cycle, and D) 
The need to maximize the processor’s performance via compiler 
and flag mining after the processor is fabricated. 

2.3 Simulators and Simulation Technique
To collect the results presented in this paper, we modified sim-
outorder from the SimpleScalar tool suite [5], version 3.0d to 
include user-configurable instruction latencies and throughputs. To 
determine the results presented in Section 5, we used wattch [3] 
as the base simulator. The specific processor configurations for 
each simulator are given in their respective sections.

To reduce the simulation time, we used 100M instruction 
simulation points [18] with a max_K of 10. The simulation points 
were either taken from the SimPoint webpage [19] or were 
generated using SimPoint 2.0 [19]. Simulation points were 
generated using the default configuration of SimPoint’s 
runsimpoint script. To minimize the effect of cold-start cache 
misses, we used assume-cache-hit for the first access to a cache 
way [11].

3. ANALYSIS OF PER-SUITE AND PER-
BENCHMARK BENCHMARK AND 
COMPILER DRIFT
When designing a processor, processor architects try to minimize 
the effect of the performance bottlenecks that the benchmark 
induces when running on the processor. Obviously, if the set of 
performance bottlenecks in one benchmark suite is sufficiently 
different from the set of performance bottlenecks in its successor 
suite, then the configuration of the optimized processor design due 
to each suite is likely to be significantly different. As described in 
the introduction, this change was a contributing factor for the 

lower-than-expected performance of the Itanium processor. 
However, if the sets of performance bottlenecks are substantially 
similar (i.e., the magnitude of each bottleneck is similar), then the 
processor architects can be confident that their processor will be 
able to efficiently run the benchmarks of the later suite.

Not only does this analysis show which performance bottlenecks 
benchmark and compiler drift exacerbates, but it also shows which 
ones it also alleviates. Additionally, analyzing benchmarks based 
on their performance bottlenecks is processor configuration 
independent (unlike using high-level metrics such as CPI and 
cache miss rate). As a result, this approach is superior to using 
high-level metrics to determine the existence and nature of 
benchmark and compiler drift, as was done in prior work.

3.1 The Plackett and Burman Design: Finding 
Performance Bottlenecks
To determine the performance bottlenecks in the processor, we 
used a Plackett and Burman (P&B) design, with foldover, as 
described in [26]. For computer architects, the P&B design is a 
statistical technique that can be used to determine the significance 
of the processor’s performance bottlenecks, with an O(N) cost, 
where N is the number of bottlenecks. Adding foldover improves 
the accuracy of the P&B design at a cost of doubling the number of 
simulations. By comparison, using a design such as ANOVA 
requires O(2N) simulations for only a little additional accuracy.

3.1.1 Mechanics of the Plackett and Burman design
The first step to use a P&B design is to construct the design matrix. 
Since P&B designs exist only in sizes that are multiples of 4, the 
base P&B design requires X simulations, where X is the next 
multiple of four that is greater than N. The rows of the design 
matrix correspond to different processor configurations while the 
columns correspond to the parameters’ values in each 
configuration. When there are more columns than parameters, then 
the extra columns serve as placeholders and have no effect on the 
simulation results.

For most values of X, the design matrix is simple to construct. The 
first row of the design matrix is given in [17]. The next X – 2 rows 
are formed by performing a circular right shift on the preceding

Table 2. Plackett and Burman design, with foldover (X=8)

A B C D E F G Exec. Time
+1 +1 +1 -1 +1 -1 -1 9
-1 +1 +1 +1 -1 +1 -1 11
-1 -1 +1 +1 +1 -1 +1 20
+1 -1 -1 +1 +1 +1 -1 10
-1 +1 -1 -1 +1 +1 +1 9
+1 -1 +1 -1 -1 +1 +1 74
+1 +1 -1 +1 -1 -1 +1 7
-1 -1 -1 -1 -1 -1 -1 112
-1 -1 -1 +1 -1 +1 +1 17
+1 -1 -1 -1 +1 -1 +1 76
+1 +1 -1 -1 -1 +1 -1 6
-1 +1 +1 -1 -1 -1 +1 31
+1 -1 +1 +1 -1 -1 -1 19
-1 +1 -1 +1 +1 -1 -1 33
-1 -1 +1 -1 +1 +1 -1 6
+1 +1 +1 +1 +1 +1 +1 4
-34 -224 -96 -202 -110 -170 32
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Figure 1. Effects of benchmark and compiler drift, and compiler-only drift on the most significant performance bottlenecks; in 
descending order of SPEC 95 performance bottleneck significance.

row. The last line of the design matrix is a row of -1s. The gray-
shaded portion of Table 2 illustrates the construction of the PB 
design matrix for X=8, a design appropriate for investigating 7 (or 
fewer) parameters. When using foldover, X additional rows are 
added to the matrix. The signs in each entry of the additional rows 
are the opposite of the corresponding entries in the original matrix. 
Table 2 shows the complete PB design matrix with foldover; rows 
10 to 17 show the foldover rows.

A “+1”, or high value, for a parameter represents a value that is 
higher than the range of normal values for that parameter while a 
“-1”, or low value, represents a value that is lower than the range
of normal values. Ideally, the high and low values for each
parameter should be just outside of the normal range of values.  
The set of low and high values that we used in this study is similar 
to those found in [26].

3.1.2 Calculating the significance of performance 
bottlenecks using the Plackett and Burman design
To compute the effect of each parameter, we multiply the execution 
time by the parameter’s P&B value (+1/-1) for that configuration 
and sum the resulting products across all configurations. For 
example, the effect of parameter A is computed as follows:

EffectA = (1 * 9) + (-1 * 11) + … + (-1 * 6) + (1 * 4) = -34

Only the magnitude of an effect is important; its sign is essentially 
meaningless. The effect that a parameter has represents how much 
of the total variation in the output value is attributable to that 
parameter. Therefore, if changing the value of a parameter results
in large changes in the execution time, then since there is a wide 
distribution of execution times across a range of processor 
configurations, there is high variability in the execution time.  
Consequently, that parameter is a significant performance 
bottleneck since changing its value results in large changes in the 
execution time.

After simulation, we computed the percentage of the CPI 
variability across all configurations that can be assigned to each
bottleneck, in a manner similar to how ANOVA computes its 
percentages [15]. By examining the percentage effect that each 
bottleneck has on the CPI for that suite or benchmark, we can 

determine its absolute and relative significance.

3.2 Per-Suite Migration of Performance 
Bottlenecks Due to Benchmark and Compiler 
Drift
To determine the overall magnitude and scope of the problem, we 
first compare how the performance bottlenecks migrate as a result 
of benchmark and compiler drift. More specifically, we compare 
the performance bottlenecks that are present in the processor when 
running the SPEC 95 benchmarks that were compiled with a circa 
1995 compiler and using 1995 input sets (i.e., B95, C95, I95) 
against the bottlenecks when running the SPEC 2000 benchmarks 
that were compiled with a circa 2000 compiler and using 2000 
input sets (B00, C00, I00). We first analyze the performance 
bottlenecks at the suite level, and then, in the following sub-
section, we examine individual benchmarks in more detail.

In Figure 1, the top and bottom lines represent the all-1995 (B95,
C95, I95) and the all-2000 design points, respectively, while the
middle line represents the effect that compiler drift has on the
performance bottlenecks. Therefore, to analyze the effect that the
combination of benchmark and compiler drift has on the 
performance bottlenecks, we need to compare the top and bottom
lines. The specific contribution of compiler drift will be analyzed 
later in this sub-section.

Figure 1 shows the percentage effect that each performance 
bottleneck has on the total variation in the CPI, in terms of the total 
percentage of variation due to single-factor bottlenecks only, i.e.,
not due to interaction bottlenecks. (Note: Single-factor bottlenecks 
account for at least 73.8% of the total variation. In other words, all 
interactions account for less than 27% of the total variation.) While 
the results for both suites are shown, the bottlenecks are arranged 
in descending order of significance for the 1995 bottlenecks for 
both benchmark suites. This ordering allows for a bottleneck-to-
bottleneck comparison. Since the percentages are cumulative for 
each bottleneck, the percentage for the fifth-most important 
bottleneck represents the total variation in the CPI that is due to the 
top-five most significant bottlenecks. Although the 1995 curve 
looks smoother than does the 2000 curve, the uneven nature of the 
2000 curve is due only to the ordering of the bottlenecks. An 



increasing gap means that a particular bottleneck in SPEC 95 is 
more significant than in SPEC 2000, while a decreasing gap means 
that a particular bottleneck is less of a performance bottleneck in 
SPEC 95. Ovals highlight cases where one bottleneck is 
significantly more important in one suite than in the other.

In this figure, there are two placeholder bottlenecks. Since these
placeholders have no physical meaning, their presence in the figure
represents the noise threshold. (The noise is the result of using a 
fractional multifactorial design (i.e., the P&B design) instead of a 
full one (i.e., ANOVA).) The dotted line corresponds to the 
location of the more significant of these two placeholders. Any 
bottlenecks to the right of the dotted line are insignificant since 
they are below the noise threshold.

Figure 1 shows that, of the 43 bottlenecks (41 real bottlenecks and 
2 placeholders), only five had a difference in their respective 
percentages that was greater than 4%. The (SPEC 95 – SPEC 
2000) difference is shown in parenthesis for these bottlenecks; a 
positive number means that that bottleneck is more significant in 
SPEC 95. Four of the five bottlenecks (the number of reorder 
buffer (ROB) entries, the L2 cache latency, the L1 I-cache size, 
and the number of integer ALUs) were more of a problem for 
SPEC 95 than for SPEC 2000. For the fifth bottleneck, the main 
memory access time, the opposite is true; this bottleneck is much 
more of a problem for SPEC 2000 than for SPEC 95. In SPEC 
2000, this bottleneck accounts for about five times more variability 
(4.28% vs. 20.90%). In other words, the main memory access time 
is a much larger performance bottleneck in SPEC 2000 than in 
SPEC 95.

The big picture from Figure 1 is that two key processor core 
parameters (the number of ROB entries and the number of integer 
ALUs) are slightly more important in SPEC 95. However, while 
the L2 cache latency is a major performance bottleneck in SPEC 
95, this performance bottleneck migrates to the main memory level 
in SPEC 2000. Finally, the L1 I-cache size is more significant in 
SPEC 95 because its cycle count is not heavily correlated to the 
main memory latency. Rather, the cycle count is affected by the 
instruction throughput, which subsequently increases the 
significance of the L1 I-cache size. From these results, the key 
conclusion of this sub-section is that benchmark and compiler drift 
exists between the SPEC 95 and SPEC 2000 benchmarks, when 
compiled with circa 1995 and 2000 compilers, respectively, since 
there are non-trivial differences in the most significant performance 
bottlenecks.

To analyze what effect compiler drift may have on the significance 
of the performance bottlenecks, we compare the middle line with 
the top line. Since the only difference between these two lines is in 
what compiler was used, if the two lines exactly track, then 
compiler drift does not exist. If the two lines diverge, then 
compiler drift exists.

To analyze the contribution that compiler drift makes towards the 
overall drift, we compare the middle line with the bottom line. 
Since the difference between the top and bottom lines is the total 
amount of drift and since the only difference between the top and 
middle lines is due to the compiler, the distance between the 
middle and bottom lines represent how much of the total drift is 
not accounted for by the compiler. Therefore, if the middle and 
bottom lines exactly track, then benchmark drift does not exist and 
all of the drift that does exists between the B95, C95, I95 and B00, 
C00, I00 design points is due only to compiler drift. On the other 
hand, if the middle line is much closer to the top line, then 

compiler drift is less significant than benchmark drift.

Of the 25 performance bottlenecks that are above the noise 
threshold, since the compiler line does not touch the 1995 line at 
any point, we conclude that compiler drift is a non-trivial 
phenomenon. Furthermore, with the possible exceptions of the L2 
cache latency (Bottleneck #2) and the main memory access latency 
(Bottleneck #6), since the compiler line tracks the 2000 line fairly 
well, we also conclude that compiler drift accounts for a significant 
fraction of the total drift, though not necessarily the majority 
fraction. (Section 4 quantifies the amount of drift that is due to the 
benchmark, compiler, and their interaction.)

To determine if the compiler drift has a widespread effect, or if it is 
just limited to the floating-point or integer benchmarks, we 
examined the corresponding versions of Figure 1 for each 
benchmark. (Due to space limitations, the figures for all 
benchmarks are not presented in this section, although the 
following sub-section presents the figures for mgrid and gcc.) The 
results show that compiler drift has very little effect for some 
benchmarks, but it has a large effect for others. For the three 
integer benchmarks (gcc, perl/perlbmk, and vortex) and for apsi, 
compiler drift is virtually non-existent as the compiler line almost 
completely overlays the 1995 line. However, for the three 
remaining floating-point benchmarks, the compiler line tracks the 
2000 line fairly closely, which indicates that compiler drift exists 
and is very significant.

3.3 Per-Benchmark Migration of Performance 
Bottlenecks Due to Benchmark and Compiler 
Drift
Figures 2A and 2B show the comparison of the performance 
bottlenecks for mgrid and gcc, respectively. The organization of 
each graph is the same as in Figure 1, with the exception that the 
performance bottlenecks that are less significant than the noise 
threshold are not shown. We present mgrid since it is
representative of the results for the floating-point benchmarks and 
we present the results for gcc since it clearly shows that most of the 
drift is due to benchmark drift.

As Figure 2A shows, two of the most significant performance
bottlenecks in 107.mgrid are the ROB size and the latency of 
integer multiplies, while less significant performance bottlenecks 
include the latencies of main memory and L2 cache accesses, both 
of which are significant bottlenecks of 172.mgrid. Therefore, we 
conclude that in 107.mgrid, the memory sub-system bottlenecks 
are relatively minor performance bottlenecks as compared to the 
instruction execution performance bottlenecks – such as the 
number of ROB entries, the number of integer ALUs, and the 
integer multiply latency. By contrast, in 172.mgrid, in addition to 
the ROB, the most significant performance bottlenecks are the L2 
cache size, the memory latency, and the L2 cache latency. 
Therefore, mgrid clearly shows how the performance bottlenecks 
move from the processor core and the levels of memory closest to 
the processor core in the SPEC 95 benchmarks to the memory sub-
system or to levels of memory that are further from the processor 
core in the SPEC 2000 benchmarks.

Figure 2B also shows that the performance bottlenecks of gcc also 
shift towards the levels of memory further away from the 
processor, albeit in a different way. In contrast to 107.mgrid, the 
performance bottlenecks of 126.gcc are more heavily concentrated 
in the processor’s instruction-fetch components (branch predictor, 
L1 I-cache size, etc.), as opposed to its instruction-execute 
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Figure 2. Effects of benchmark and compiler drift, and compiler-only drift on the most significant performance bottlenecks; in 
descending order of SPEC 95 performance bottleneck significance.

components (number of ALUs and multiply/divide units, 
instruction latencies, etc.). Therefore, while the performance 
bottlenecks of 126.gcc also shift from the processor core towards
levels of memory further away from the processor, they are on the 
instruction-fetch side, instead of in the instruction-execute side. 
Furthermore, since the L2 cache latency is more of a performance 
bottleneck in 126.gcc, but the L2 cache size is not, this indicates 
that the L2 cache is able to service most of the memory accesses in 
126.gcc. As a result, the L2 cache size is not a performance 
bottleneck.

Finally, of the five remaining benchmarks, drift is a significant 
problem for swim and applu, due to the increased significance of 
the memory sub-system parameters. Drift is not as severe a 
problem for apsi, and is not a problem at all for perl/perlbmk and 
vortex.

3.4 Potential Simulation Methodology Effects 
on the Simulation Results and Conclusions
3.4.1 Potential simulation methodology effects on the 
simulation results and conclusions
As described in Section 2.1, since a circa 1995 FORTRAN 
compiler was not available, we used f2c to translate a benchmark 
from FORTRAN to C before compiling the resulting C code with a 
circa 1995 C compiler. Naturally, the key question about this 
methodology is what effect does f2c have on the results and, more 
importantly, the overall conclusions? To characterize the effect that 
f2c has on the simulation results, we compared the performance 
bottlenecks when a native FORTRAN compiler was used and when 
using f2c and a C compiler. More specifically, we compiled the 
three SPECfp 2000 benchmarks (171.swim, 172.mgrid, and 
173.applu) where drift was a significant problem (drift was not a 
significant problem for 301.apsi) with a native circa 2000 
FORTRAN compiler and also by using f2c to translate the 
benchmarks into C first before compiling them with a native circa 
2000 C compiler (f2c+cc). Then we applied a P&B design to 
both sets of binaries to characterize their performance bottlenecks.

The results show that for all but one of the bottlenecks, f2c has 
very little or no effect on their significance. In other words, f2c
does not make these bottlenecks significantly more or less 
important. The one exception is the number of ROB entries; using 
f2c overestimates its significance, more so for 171.swim and 
172.mgrid than for 173.applu. The larger significance of the ROB 

size is due to the fact that the f2c+cc generated code contains 
larger pieces of sequential code, e.g., some code sequences require 
longer chains of dependent instructions because the compiler has 
less knowledge about the code and hence can optimize less, which 
consequently increases the importance of a large ROB, since the 
ROB is another means of extracting a large amount of parallelism.

There are two key conclusions from this sub-section. First, with the 
exception of overestimating the significance of the number of ROB 
entries for the floating-point benchmarks, using f2c+cc has very 
little effect on the results in this paper. And although it does 
overestimate the significance of the number of ROB entries, it does 
not change the conclusions in the previous section; namely, that 
benchmark and compiler drift are significant problems and that the 
performance bottlenecks migrate from levels of memory closer to 
the processor to levels that are further away, as a result of drift. 
Additionally, it does not affect any of the results and conclusions 
in the rest of this paper.

3.4.2 Potential SimPoint impact
It is worth noting that the results in Figures 1, 2A, and 2B, and 
Table 3 represent a conservative estimate of drift due to the 
mechanics of how the SimPoint tool chooses simulation points 
That is, drift is likely to be more severe for the benchmarks with 
complex phase behavior than the results in the above figures and 
table would indicate because SimPoint, especially for lower
max_K values (we used a max_K of 10), does not choose phase 
transitions to be simulation points. Using these simulation points 
may underestimate the effect of the memory access latency [27]. 
Therefore, benchmarks that spend a significant number of cycles 
servicing memory accesses, i.e., the SPEC 2000 benchmarks, are 
likely to have higher-than-expected memory sub-system 
performance, which partially mitigates the shift of the performance 
bottlenecks to the memory sub-system that we observed in these 
experiments.

4. STATISTICALLY-BASED DRIFT 
MODEL
One question from the analysis above is how much of the total drift 
can be attributed to the benchmark, the compiler, and the 
interaction of the two? To answer this question we use an ANOVA 
design [15] to determine what fraction of the CPI variation is due 
to benchmark drift, compiler drift, and benchmark-plus-compiler-
interaction drift when moving between the B95, C95, I95 and B00,



Table 3. Percentage of total drift variation accounted for by 
each drift component

Benchmark Type
Benchmark 

Only
Compiler 

Only
Benchmark 
+ Compiler

swim FP 22.12 75.91 1.97
mgrid FP 18.63 69.67 11.70

applu FP 0.91 97.75 1.35

gcc Int 97.11 0.04 2.85

perlbmk Int 78.57 10.10 11.33

vortex Int 88.64 4.13 7.23

apsi FP 8.67 14.96 76.38

Int Average 88.11 4.76 7.13
FP Average 12.58 64.57 22.85

Suite Average 44.95 38.94 16.11

C00, I00 design points.

4.1 ANOVA Design Methodology
For the following four ANOVA testcases: 1) B95/C95, 2) 
B95/C00, 3) B00/C95, and 4) B00/C00, we simulated a very wide 
range of configurations (88 in all). Although simulating this many 
different processor configurations greatly increases the simulation 
time – as compared to simulating a single processor configuration 
– there are two key advantages in doing so. First, simulating only a 
single processor configuration for each testcase may 
unintentionally skew the results towards one of the three drift 
components. Obviously, simulating 88 processor configurations 
minimizes the possibility of inadvertent skew, especially since the 
different configurations that we simulated corresponded to the 
“corners” of the design space. Second, and more importantly, by 
“replicating” the simulation results for each testcase, we can 
calculate the experimental “error” associated with the variation in 
CPIs due to different processor configurations. In other words, we 
can determine how much of the overall variation in the CPIs is due 
to each factor, i.e., benchmark drift, compiler drift, benchmark-
plus-compiler interaction drift, and processor configuration.

However, to verify if these 88 atypical processor configurations are 
either overstating the results or obscuring other important
conclusions, we repeated the ANOVA design for 4 realistic 
processor configurations (base 4-way issue, aggressive 4-way 
issue, base 8-way issue, and aggressive 8-way issue). Unless 
otherwise stated, the results for 88 and 4 processor configurations 
were extremely similar and the conclusions were identical.

4.2 Benchmark and Compiler Drift vs. 
Processor Configuration Variation
The first result that we extract from the 88 processor configuration
simulation results is that the processor configuration is responsible 
for approximately nine times the amount of variation in the CPI as 
compared to the total of all three drift components. However, it is 
important to point out that the amount of CPI variation due to 
different processor configurations is artificially high since the 88 
processor configurations correspond to the corners of the design 
space. For example, one processor configuration has an 8-entry 
ROB, a single integer ALU, a 2-entry LSQ, and a 2KB, direct-
mapped L1 D-cache while another processor configuration has a 
64-entry ROB, four integer ALUs, a 64-entry LSQ, and 128KB, 8-
way L1 D-cache. Consequently, one can, to a certain degree,

expect large variations in the CPI solely due to the processor 
configuration. 

For the 4 realistic processor configurations, the results were 
extremely similar to the results of the 88 configurations for some 
benchmarks. However, for other benchmarks, the percentage of the 
CPI variation that is a result of drift is almost the same as the 
percentage of the CPI variation that is accounted for by the 
processor configuration. For example, for perl/perlbmk, benchmark 
drift accounts for 45.7% of the total CPI variation while changing 
the processor configuration accounts for 48.8%. This particular 
result shows that benchmark drift can have as much of an impact 
on the CPI as changing the processor configuration from a simple 
4-way issue processor to an aggressive 8-way issue one. Or, in 
other words, benchmark drift has as significant an impact on the 
execution time of benchmarks such as perl/perlbmk as radically 
changing the processor configuration.

Our conclusion from this sub-section is that the processor 
configuration generally has more impact on the variation in the 
CPIs than benchmark and compiler drift does. For some 
benchmarks, however, drift and processor configuration account 
for similar percentages of the CPI variation.

4.3 Statistically-Based Drift Model Results
Table 3 shows the percentage of the CPI variation that is accounted 
for by each of the three drift components, after removing the 
variation due to the 88 processor configurations. The results for the 
4 realistic processor configurations were extremely similar.

Across all seven benchmarks, these results show that benchmark 
drift is only slightly more significant than compiler drift. However, 
for the integer benchmarks taken as a group, benchmark drift 
accounts for nearly all of the CPI variation that is attributable to 
drift. The opposite conclusion is true for the floating-point 
benchmarks, although the difference is not quite as dramatic. In 
these benchmarks, compiler drift is the dominant reason for the 
variation in CPI, although the benchmark-plus-compiler interaction 
accounts for a significant percentage of the total CPI variation. 
Based on these results, we conclude that benchmark drift is at least 
15% ((44.95-38.94) / 38.94) more significant than compiler drift. 
Furthermore, both drift components are at least twice as significant 
as benchmark-plus-compiler-interaction drift.

5. IMPACT OF DRIFT ON THE OPTIMAL 
PROCESSOR DESIGN CONFIGURATION
The two key conclusions from the previous sections are that 
benchmark and compiler drift exist and that the performance 
bottlenecks migrate towards levels of memory further away from 
the processor. While these are important conclusions, the key 
question is what, if any, differences in the optimal processor 
configuration result from benchmark and compiler drift and the 
subsequent migration of the performance bottlenecks? And, if there 
is a difference, what performance impact does it make? To answer 
these questions, this section studies how drift affects the optimal 
processor configuration. Specifically, the question we address is 
how much of the performance potential is lost due to drift, and for 
what reasons? With this goal in mind, we optimize one processor 
configuration for the B95, C95, I95 (the “SPEC 95 optimized 
processor”) design point and another processor for B00, C00, I00 
(the “SPEC 2000 optimized processor”) design point. The former 
design point is what an architect might start at when designing a
new processor in 1995, while the second design point would



Figure 3. One-Parameter-At-A-Time Algorithm to Find the 
Optimal Processor Configuration

correspond to the potential design point when the processor is 
released in 2000. If there is a considerable difference in the two 
optimal processor configurations, we can conclude that drift has a 
significant impact on processor design, and then we can determine 
how drift affects the optimal configuration. We can also quantify 
the lost performance potential by comparing the performance of 
SPEC 2000 when executed on the SPEC 95 optimized processor 
compared to the performance of SPEC 2000 when run on the 
SPEC 2000 optimized processor.

Before presenting the results from this study, we first discuss our 
optimal processor design search algorithm and our optimization 
criterion.

5.1 Optimal Design Point Search Algorithm
To determine the optimal processor configuration, we used the 
one-parameter-at-a-time optimization algorithm. As its name 
implies, in this algorithm, only one parameter is optimized (i.e.,
varied) at a time. After optimizing each parameter, the value of that 
parameter is set to the value that yields the optimal result and 
then the next parameter is optimized. For example, assume that we 
are trying to optimize parameters x, y, and z that start with an initial 
configuration of x3, y1, and z1. If x is the first parameter to 
optimize, we measure the optimality of the following processor 
configurations {x1, y1, z1}, {x2, y1, z1}, … , {xn-1, y1, z1}, {xn, y1, z1}, 
where n is the number of values parameter x can be set to. If 
configuration {x2, y1, z1} is optimal, we change the value of x from 
x3 to x2, and then optimize parameter y across its range of values.

After optimizing all three parameters, we check to see if there was
any change in the optimal configuration since the last time 
parameter z was optimized. If not, then the last configuration is the 

optimal one. If so, then we re-optimize all three parameters 
repeatedly until the configuration does not change for a single 
iteration of all three. The specifics of the algorithm are shown in 
Figure 3.

Although this search algorithm optimizes only one parameter-at-a-
time, by repeatedly optimizing all parameters until the processor 
configuration “converges”, this optimization algorithm minimizes
the likelihood of getting trapped in local minimum. For these
simulations, several iterations were required until the configuration 
stabilized. Additionally, to further minimize the likelihood of 
getting trapped in a local minimum, we optimize the parameters in 
descending order of significance (i.e., the most significant 
parameter is optimized first, then the second most significant 
parameter is optimized next, and so on). Finally, we chose this 
algorithm based on our observation that processor designers use 
this type of algorithm due to its fast search time.

Of the 41 performance bottlenecks, the ten most significant ones 
for B95, C95, I95 were also in the list of the ten most significant 
ones for B00, C00, I00, but just in a different order. Since the11th, 
12th, etc. most significant bottlenecks from each design point were 
different, we were unable to find another set of bottlenecks to 
optimize over such that we would be optimizing over the Top N 
bottlenecks from both design points, and that did not require
optimizing over an intractable number (i.e., all 41) of bottlenecks.
Therefore, we optimized over just these ten bottlenecks, which are 
listed in Table 4 along with their range of candidate values. The 
range of possible values was based on current processors. Finally, 
the third column shows the initial configuration of both processors, 
which was randomly chosen.

Although the cache access latencies are not listed, each of these 
latencies were based on the current size, associativity, and block 
size of each cache. For the L1 caches, the latencies ranged from 1 
to 4 cycles, while for the L2 cache, the latency ranged from 7 to 12 
cycles.

To reduce the simulation time, we fixed the number of load-store 
queue (LSQ) entries to always be half of the number of ROB
entries. Therefore, optimizing for the number of ROB entries really 
optimized both the number of ROB entries and the number of LSQ 
entries. To reduce the simulation time further, since several 
serialized iterations were required before the configuration
stabilized, we used only a single input set for 126.gcc (cp-decl), 
134.perl (scrabbl), 176.gcc (expr), 253.perlbmk (splitmail 
957), and 255.vortex (lendian3). We chose these input sets 
since their vector of CPIs from the P&B design simulations was 
closest to the centroid of the space for that benchmark.

Table 4. Performance bottlenecks to optimize, possible values, and initial configuration

Bottleneck Possible Values Initial Configuration

Number of Reorder Buffer (ROB) Entries 32, 64, 96, 128, 160 32
L2 Cache Associativity 2-Way, 4-Way, 8-Way 2-Way

L2 Cache Size 512KB, 1024KB, 2048KB, 4096KB 2048KB
L1 I-Cache Size 32KB, 64KB, 128KB 32KB

Branch Predictor Entries 1024, 2048, 4096 4096
Number of Integer ALUs 2, 3, 4 3

L1 D-Cache Size 16KB, 32KB, 64KB 16KB
L1 D-Cache Associativity 2-Way, 4-Way, 8-Way 2-Way

L1 I-Cache Block Size in Bytes 32, 64 32
Number of Load-Store Queue Entries 0.5 * Number of ROB Entries 16

1. Assign i = 0 and choose an initial configuration as the 
current optimal configuration Ci,0

2. For each architectural parameter j, with 0 < j ≤ n,
a. Determine the optimal value for parameter j while 

keeping the other parameters at their current optimal 
configuration Ci,j-1 values

b. Update the current optimal configuration Ci,j with the 
latest optimal configuration for the given parameter

3. If the current optimal configuration Ci,n equals the 
previously obtained optimal configuration Ci-1,n, stop and 
report Ci,n as the optimal configuration; otherwise, 
increment i and go to step 2.



Table 5. Optimal processor configurations for SPEC 95 and SPEC 2000 derived processors, arranged in decreasing order of SPEC 
2000 parameter significance

Bottleneck SPEC 95 SPEC 2000 Comment

Number of Reorder Buffer (ROB) Entries 96 160 SPEC 2000 optimized processor opts for a much larger ROB
L2 Cache Associativity 4-Way 4-Way

L2 Cache Size 2048KB 1024KB SPEC 2000 optimized processor opts for a smaller L2 cache
L1 I-Cache Size 32KB 32KB

Branch Predictor Entries 4096 4096
Number of Integer ALUs 4 4

L1 D-Cache Size 16KB 16KB
L1 D-Cache Associativity 4-Way 4-Way

L1 I-Cache Block Size in Bytes 64 64
Number of Load-Store Queue Entries 48 80 SPEC 2000 optimized processor opts for a much larger LSQ

Table 6. Percent difference in CPI and EDP between the SPEC 95 and SPEC 2000 optimized processors for two SPEC 2000
processor L2 cache sizes (1024KB (optimal) and 2048KB); Percent difference = (SPEC 95 – SPEC 2000) / SPEC 2000

 1024 KB L2 Cache (Optimal) 2048KB L2 Cache
Benchmark

Percent CPI Difference  Percent EDP Difference  Percent CPI Difference  Percent EDP Difference  
171.swim 52.41 74.24 53.02 67.93
172.mgrid 14.56 12.49 16.28 10.28
173.applu 31.44 36.90 32.21 33.04
176.gcc -3.73 -16.04 0.86 -12.93

253.perlbmk -1.78 -13.41 1.96 -10.90
255.vortex -0.68 -10.92 4.27 -7.29
301.apsi 12.16 6.62 11.46 2.37

Average 20.84 18.55 22.73 17.19

Consequently, using a sub-set of the input sets should have very 
little effect on the final optimized configuration.

Without an associated “cost” to each of the bottlenecks listed in
Table 4, the optimization algorithm will predictably choose the 
largest value of each parameter in an effort to decrease the
execution time. Therefore, in this paper, we define the optimal 
processor configuration to be the one with the minimum energy-
delay product (EDP), where EDP = EPI * CPI (EPI = Energy per 
Instruction and CPI = Cycles per Instruction). The energy-delay 
product is a commonly used metric that quantifies the energy-
efficiency of general-purpose microprocessors [4]. While there are 
alternative optimization cost functions in commercial processor 
design, these cost functions are very complex since they utilize a 
wide range of optimization criteria and design constraints, such as 
CPI, cycle time, chip area, power budget, heat transfer, power 
density, reliability, etc. In this paper, however, we use the simple 
and easy-to-understand EDP optimization criterion.

5.2 Optimized Processor Configuration 
Results and Discussion
Table 5 presents the optimized processor configuration for each 
benchmark suite. The first column lists the performance 
bottlenecks that we optimized for. The second and third columns 
list the final optimal processor configuration when optimizing for 
the SPEC 95 and SPEC 2000 benchmarks, respectively. The fourth 
column summarizes the difference, for each parameter, between the 
two processors.

The comment column in Table 5 shows that there are two key 
differences between the SPEC 95 and SPEC 2000 optimized 
processors. First, the configuration of the SPEC 2000 optimized 
processor uses a much larger ROB than the SPEC 95 optimized 

processor, even though using f2c to compile the SPECfp 95 
benchmarks may result in an artificially large ROB. On the other
hand, the SPEC 2000 optimized processor selects the largest
number of ROB entries possible. While this result may seem 
surprising from an EDP point-of-view (increasing the number of 
ROB and LSQ entries is very expensive from an energy point-of-
view), there are several reasons that explain this
outcome. First and foremost, the number of ROB entries is the 
most significant bottleneck in SPEC 2000. As a result, it is not that 
surprising that the SPEC 2000 optimized processor would opt for a 
large ROB, even given the high energy cost. Second, a processor 
with a larger ROB can hide the L2 cache misses by exploiting 
parallelism. Third, in addition to buffering a larger number of loads 
and stores, an 80-entry LSQ – at least in SimpleScalar – essentially 
functions as a de facto L0 D-cache, which increases the chances for 
store-forwarding, reduces the number of L1 D-cache cast-outs, and 
slightly decreases the number of L1 D-cache and L2 cache accesses
(by satisfying load accesses via store forwarding). Therefore, a 
larger ROB and LSQ is more efficient from an EDP point-of-view 
due to its ability to hide the memory sub-system access latency and 
since the LSQ functions as a low-latency, fully-associative L0 D-
cache.

The SPEC 2000 optimized processor also opts for a smaller L2 
cache (1024KB vs. 2048KB). However, as the results in Section 3 
showed, since the memory latency is more significant of a 
performance bottleneck in SPEC 2000, it is surprising to see that 
the L2 cache of the SPEC 2000 optimized processor is smaller than 
that of the SPEC 95 optimized processor’s. However, there are 
three reasons for this difference. First, the larger LSQ reduces the 
number of L2 cache accesses (by using store forwarding to 
decrease the number of L1 D-cache accesses, which, in turn, 
reduces the number of L2 cache accesses), which decreases the



significance of the L2 cache as a performance bottleneck. Second, 
although a larger L2 cache increases the hit rate, the associated
trade-off is that the cache access latency increases by a cycle when 
the L2 cache doubles in size. Third, although the CPI for a 
processor with a 2048KB L2 cache is 1.54% lower than a 
processor with a 1024KB L2 cache, it consumes 2.74% more 
energy, which results in a sub-optimal EDP. Nevertheless, since 
the difference in the EDPs between the two L2 sizes was only 
1.15%, the final L2 cache size for the SPEC 2000 optimized 
processor was very close to being a toss-up.

5.3 Effect of Different Optimized
Configurations on the Performance and 
Energy-Delay Product
Although the results from Section 3 and the previous sub-section 
concluded benchmark and compiler drift exist and is a significant
enough of a problem to alter the optimized processor 
configuration, the singular outstanding question is how much 
difference – in terms of the CPI and EDP – can drift actually have? 
To answer this question, we compare the performance (CPI) and 
the EDP of the SPEC 95 and SPEC 2000 optimized processors 
when both processors run the SPEC 2000 benchmarks, which is 
the situation that a processor designer would have faced when 
originally designing the processor in 1995. Table 6 presents the 
CPI and EDP results of this comparison. The first column lists the 
benchmarks, while the second/fourth and third/fifth columns list 
the difference in the CPIs and EDPs, respectively, when the SPEC 
2000 optimized processor is the baseline ((SPEC 95 – SPEC 2000) 
/ SPEC 2000)). Therefore, larger, positive numbers means that the 
SPEC 2000 optimized processor achieves a lower CPI (i.e., higher 
performance) or a lower EDP (i.e., better energy efficiency).

Overall, the results show that the CPI of the SPEC 2000 optimized 
processor with a 1024KB L2 cache is 20.84% better than the CPI 
of the SPEC 95 optimized processor, while the EDP is 18.55% 
better. Consequently, we conclude that benchmark and compiler 
drift can result in large performance and EDP differences between 
the optimized processor configurations. The large difference in the 
CPIs and EDPs are strictly due to the floating-point benchmarks, 
which is not surprising given that the most significant performance 
bottleneck in the SPECfp 2000 benchmarks is the number of ROB 
entries and that the SPEC 2000 optimized processor has an 
additional 64 ROB and 32 LSQ entries. On the other hand, since 
the significance of the L2 cache size as a performance bottleneck is 
much lower than the significance of the number of ROB entries, 
increasing the L2 cache size (which also incurs an increase in the 
L2 cache access latency) does not significantly improve the CPI.

For the integer benchmarks, since the ROB is not one of the most 
significant performance bottlenecks, using a larger ROB does not 
result in significant performance improvements, but does
significantly increase the EDP. On the other hand, since the LSQ is 
about as significant a performance bottleneck as the L2 cache size, 
the larger LSQ helps palliate the effect of the L2 cache size as a 
performance bottleneck. Lastly, although the CPI decreases by 
1.54% as a result of the larger L2 cache size, the associated EPI 
increase of 2.74% more than offsets the CPI gain from an EDP 
point-of-view, which makes this configuration less than optimal.

The key conclusion from this section is that using older 
benchmarks and compilers for processor design can result in 
processor configurations that are significantly different than when 
the latest benchmarks and compilers are used, and that the 

performance and energy efficiency of the former configurations can 
be dramatically lower – in this case, a CPI and EDP that are 
20.84% and 18.55% higher, respectively. The combination of this 
conclusion and one from the previous section – that drift can have 
as significant an impact on the CPI as radically changing the 
processor configuration – show that processor designers and 
computer architecture researchers need to be conscious of
benchmark and compiler drift in their studies since it can 
significantly distort their simulation results. Furthermore, these 
conclusions should also encourage architects to continually 
examine and characterize benchmark and compiler trends.

6. RECOMMENDATIONS TO MINIMIZE 
AND ACCOUNT FOR THE EFFECTS OF 
DRIFT
The results in Section 4 showed that benchmark and compiler drift 
can have as much impact on the CPI as radical changes in the 
processor configuration, while the results in Section 5 showed that 
drift can change the optimized processor configuration enough to 
result in performance that is significantly sub-optimal. As a result, 
since this phenomenon has the potential to not only gravely affect 
the performance of commercial processors, but to influence, subtly 
or otherwise, the directions of computer architecture research, it is 
very important for computer architects to account for and/or 
minimize the effects of drift. Accordingly, we make the following 
recommendations:

1. Benchmark suites and compilers, such as SPEC and 
gcc, respectively, should be updated more 
frequently.

2. Parameterizable benchmarks, such as those 
described in [1, 2, 20] should be used to project the 
potential effects of benchmark and compiler drift.

Since the characteristics of future benchmarks and compilers
change over time, updating both more frequently minimizes the 
“abruptness” of the changes in their characteristics. If computer 
architects follow these recommendations, although there will be
less drift between successive versions of a benchmark suite or 
compiler, the total amount of drift over the same amount of time 
(i.e., without more frequent updates) will still be the same.

As their name implies, with parameterizable benchmarks, the 
characteristics of the benchmark can be easily adjusted by 
changing the value of a parameter. By using a range of parameter 
values, computer architects may be able to mimic the 
characteristics of future benchmarks, which may allow them to 
properly compensate for the effects of drift. In other words, 
computer architects can use parameterizable benchmarks to 
perform “what-if” experiments to help optimize the processor’s 
configuration to account for future drift. 

Finally, it is important to note that while these recommendations 
minimize the effects of drift, they do not eliminate them as 
benchmark and compiler drift cannot be eliminated.

7. RELATED WORK
Phansalkar et al. [16] studied how the SPEC CPU benchmarks 
(1989, 1992, 1995, and 2000) change over time. They looked at 
microarchitecture-independent characteristics in order to identify 
changes in the workload and used principal component analysis to 
characterize and compare the benchmark suites, but did not 



evaluate the impact of drift on processor design. Their results 
showed that other than dramatic increases in the dynamic 
instruction count and increasingly poor temporal data locality, 
fundamental program characteristics such as branch and ILP 
characteristics are generally static. Our paper also studies the effect 
that workload changes have on processor’s performance, adds 
compiler drift as a factor, and constructs a drift model.

Vandierendonck and De Bosschere compare the data memory 
behavior of SPEC 95 and SPEC 2000 in [22]. Their results show 
that some SPEC 95 benchmarks have behavior that is very 
different than the behavior of the other benchmarks. Furthermore, 
their results show that this behavior can be easily improved, which 
SPEC addressed for selected benchmarks in the SPEC 2000 suite. 
Calder et al. [6] compared the characteristics of C and C++ 
programs including: function and basic block sizes, instructions 
between conditional branches, call stack depth, use of indirect 
function calls and memory operations, and measurements of cache 
locality. The C programs that they examined included the SPECint 
92 suite, while the remaining C and all of the C++ programs were 
gathered from a variety of sources. Consequently, their results did 
not explicitly examine benchmark drift. 

Standardized benchmark suites, such as the various SPEC 
benchmark suites [21], are updated regularly. A benchmark may be 
modified or removed when it is no longer representative or has 
reproducible results, or if compiler optimizations drastically reduce 
its execution time. Examples of the latter include matrix300 from 
SPEC 89 [12] and eqntott from SPEC 92 [24]. In the case of sc, 
system libraries had too large an impact on the running time of the 
benchmark [7]. As a result, all of these programs were removed 
from subsequent SPEC benchmark suites. Another compelling 
reason to update benchmarks is benchmark drift. SPEC recognizes 
that they have to “keep pace with the breakneck speed of 
technological innovation” [13] and intentionally selected SPEC 
2000 benchmarks such that they consume much more memory than 
SPEC 95 [14].

Given the prevalent use of benchmarks in computer architecture, 
one would expect that many quantitative metrics or methods have 
been developed to evaluate and improve the appropriateness of a 
benchmark suite. However, few efforts have been directed in this 
area. Dujmovic et al. [9] developed metrics to estimate the size and 
redundancy of a benchmark suite. Using these metrics, they 
showed that the SPEC benchmark suite has increased in size (i.e.,
more differences between processors can be detected) and that 
redundancy decreased between the SPEC 89 and SPEC 95 
versions. Eeckhout et al. [10] developed a method to gauge 
benchmark similarity (and thus redundancy). By applying cluster 
analysis techniques on workload characteristics, identifying 
benchmarks that are similar is relatively easy.

8. CONCLUSION
As the time required to design a processor continues to increase, it 
is increasingly likely that different generations of a benchmark 
suite and different versions of the same compiler will be used in 
the design process. If the characteristics of the successor suite or 
compiler are significantly different than those of their respective 
predecessors, then the design decisions that the processor 
architects make early in the design cycle may be sub-optimal when 
the performance is measured using the most current suite available 
after the processor is fabricated and the benchmarks are compiled 
with the latest compiler. We coin the terms benchmark drift and 
compiler drift to refer to the phenomenon of time-varying 

benchmark and compiler characteristics, respectively.

Our results show that both benchmark and compiler drift exist and 
are potentially significant problems. Furthermore, the most 
significant performance bottlenecks for the SPEC 95 benchmarks 
are in the processor core and in the levels of memory closest to the 
processor, while these bottlenecks migrate to levels of memory 
further away from the processor core for the SPEC 2000 
benchmarks. Our results also show that benchmark drift is at least 
15% more significant than compiler drift, while both components 
are at least twice as significant as the drift due to the interaction of 
the benchmark and compiler. Furthermore, the results show that for 
some benchmarks, perl/perlbmk in particular, drift has as 
significant effect on the CPI as does dramatically changing the 
processor configuration.

After using the one-parameter-at-a-time optimization algorithm and 
the energy-delay product (EDP) as the optimization criterion to 
find the optimal processor configuration, the SPEC 2000 optimized 
processor opts for a much larger reorder buffer (160 entries vs. 96 
entries), but selects an L2 cache that is half the capacity as the 
SPEC 95 optimized processor’s L2 cache. These differences in the 
optimal processor configurations led to very large differences in 
the CPI and EDP. More specifically, the CPI for the SPEC 2000 
optimized processor is 20.84% lower than in the SPEC 95 
optimized processor, while the EDP is 18.55% lower.

Finally, to help computer architects compensate for the effects of 
drift for research and design, we recommend that computer 
architects: 1) Update benchmark suites and compilers more 
frequently and 2) Use parameterizable benchmarks to (potentially)
project the characteristics of future benchmarks and compilers.

In summary, the two key conclusions from this paper are that 
benchmark and compiler drift exist and that drift can significantly 
affect processor design and its subsequent performance. Or, in 
other words, the exigency of benchmark and compiler drift is that 
tomorrow’s processors are being designed using yesterday’s 
benchmarks and compilers, with potentially serious performance 
degradation and energy implications due to significantly different 
characteristics.
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