
The Exigency of Benchmark and Compiler Drift:
Designing Tomorrow’s Processors with Yesterday’s Tools

Joshua J. Yi, Hans Vandierendonck, Lieven Eeckhout, and David J. Lilja

Freescale Semiconductor, Inc.
Austin, TX

joshua.yi@freescale.com

Ghent University
Ghent, Belgium

{hvdieren, leeckhou}@elis.ugent.be

University of Minnesota
Minneapolis, MN

lilja@ece.umn.edu

ABSTRACT
Due to the amount of time required to design a new processor, one
set of benchmark programs may be used during the design phase
while another may be the standard when the design is finally
delivered. Using one benchmark suite to design a processor while
using a different, presumably more current, suite to evaluate its
ultimate performance may lead to sub-optimal design decisions if
there are large differences between the characteristics of the two
suites and their respective compilers. We call this change across
time “drift”. To evaluate the impact of using yesterday’s
benchmark and compiler technology to design tomorrow’s
processors, we compare common benchmarks from the SPEC 95
and SPEC 2000 benchmark suites. Our results yield three key
conclusions. First, we show that the amount of drift, for common
programs in successive SPEC benchmark suites, is significant. In
SPEC 2000, the main memory access time is a far more significant
performance bottleneck than in SPEC 95, while less significant
SPEC 2000 performance bottlenecks include the L2 cache latency,
the L1 I-cache size, and the number of reorder buffer entries.
Second, using two different statistical techniques, we show that
compiler drift is not as significant as benchmark drift. Third, we
show that benchmark and compiler drift can have a significant
impact on the final design decisions. Specifically, we use a one-
parameter-at-a-time optimization algorithm to design two different
year-2000 processors, one optimized for SPEC 95 and the other
optimized for SPEC 2000, using the energy-delay product (EDP)
as the optimization criterion. The results show that using SPEC 95
to design a year-2000 processor results in an 18.5% larger EDP
and a 20.8% higher CPI than using the SPEC 2000 benchmarks to
design the corresponding processor. Finally, we make a few
recommendations to help computer architects minimize the effects
of benchmark and compiler drift.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques; I.6
[Simulation and Modeling]: Model Validation and Analysis,
Simulation Output Analysis

General Terms
Measurement, Performance

Keywords
Benchmark drift, compiler drift, microprocessor design

1. INTRODUCTION
Due to their tremendous complexity, the time required to design
next-generation microprocessors presently spans several years.
However, since processor architects make most of the design
decisions and trade-offs early in the design cycle when the design
has the greatest degree of fluidity, and since several years will
elapse between that point in time and the time when the processor
is in large-scale production, it is quite likely that the benchmark
suite that is used to guide the design decisions could be superseded
by its successor. For example, if in 1995, processor architects used
benchmarks from the SPEC 95 benchmark suite to guide their
initial design decisions, but that processor was not commercially
available until mid-2000 (after the introduction of SPEC 2000),
then, in this example, the architects used benchmarks from the past
to design a processor for the future. Further exacerbating this
potential problem are improvements in compiler technology and
changing benchmark input sets. We coin the term benchmark drift
to describe the phenomenon of time-varying changes in benchmark
programs due to updating benchmark suites, and analogously,
compiler drift for compilers. For processor designers, drift may
result in sub-optimal designs, while drift may affect computer
architecture research by overweighting or underweighting the
efficacy of novel enhancements or obscuring important benchmark
characteristics.

One example of a processor that was affected by benchmark drift –
specifically as a result of changes in the benchmarks’
characteristics – was Intel’s Itanium processor. One of the most
notable features of the Itanium processor is its implementation of
if-conversion using branch predication, which can reduce the
average number of cycles needed to execute branch instructions by
converting hard-to-predict branch instructions into data
dependences. For the integer benchmarks of the SPEC 2000
benchmark suite, however, only 7% of the total clock cycles were
spent processing branch instructions [8]. More generally, as a
result of the increasing gap between processor and memory speeds
[25], a higher percentage of the clock cycles are spent servicing
memory requests instead of processing branch instructions in the
SPEC 2000 benchmarks, as compared to the SPEC 92 and SPEC
95 benchmarks. These types of changes in a benchmark’s
characteristics can contribute to lower-than-expected performance
when the processor actually ships, as was (at least partially) the
case for the Itanium processor, since the design was optimized
based on the characteristics of the older benchmark suite. As this
example illustrates, benchmark (and compiler) drift is not strictly a
theoretical, academic problem, but, rather, a bona fide issue that
can result in adverse outcomes for commercial processors and
negatively influence the directions of computer architecture
research.

Despite the importance of this problem, there has been very little

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICS06, June 28-30, 2006, Cairns, Queensland, Australia.
Copyright © 2006 ACM 1-59593-282-8/06/0006...$5.00.

research on benchmark and compiler drift. Of the prior work that
focused on drift, all of them limited their focus to examining select,
high-level benchmark characteristics (e.g., branch and ILP
characteristics) instead of quantifying the magnitude of the drift
and its attendant impact on processor design. While there certainly
is merit in the quantification of these benchmark-level
characteristics, myopically examining them without connecting the
impact of their evolution to processor design and performance
optimization can, in the worst case, result in processors with sub-
optimal performance, as exemplified by the Itanium.

To address this critical need, this paper is the first, to the best of
our knowledge, to quantify benchmark and compiler drift and its
subsequent effect on processor design. Furthermore, this paper
illustrates and motivates the need to comprehensively study the
time-evolving characteristics and trends of benchmarks and
compilers. Specifically, in this paper, to measure the amount of
benchmark and compiler drift, we first examine the performance
bottlenecks that are present when running each benchmark, and
again when later versions of the benchmark and compiler are used.
By comparing the performance bottlenecks across two versions of
a benchmark, we can explicitly determine how the performance
bottlenecks have “migrated” due to drift and why the optimized
processor configuration changes across benchmark suites. Second,
we use the analysis-of-variance (ANOVA) statistical design-of-
experiments [15] to build a statistically-based model of benchmark
and compiler drift. Third, we determine the potential effect that
benchmark and compiler drift could have on the optimized
processor configuration. More specifically, we compare two
processors, one that was optimized for the SPEC 95 benchmarks
when compiled with a circa 1995 compiler and one that was
optimized for the SPEC 2000 benchmarks when compiled with a
circa 2000 compiler. To focus on the effect that changing
benchmark characteristics – and not on the inclusion or exclusion
of benchmarks – have on benchmark drift, we use only the seven
benchmarks that are common to both SPEC 95 and SPEC 2000
suites in this paper. (Note that in this paper when we use the term
“processor,” we are referring to not only the processor core, but
also to its memory sub-system. For brevity, in the remainder of the
paper, the term “processor” also includes its memory sub-system.)

The contributions of this paper are as follows:

1. It identifies and analyzes the problem of drift,
examines its potential impact on processor design,
and motivates the continued need for the
comprehensive examination of benchmark and
compiler trends.

2. It quantifies the amount of benchmark and compiler
drift that is present across the SPEC 95 and SPEC
2000 benchmark suites by comparing the
differences in the sets of performance bottlenecks
from both benchmark suites, when using circa 1995
and 2000 compilers. The results clearly show that
the performance bottlenecks migrate from the
processor core to levels further into the memory
sub-system as a result of drift.

3. It builds a statistically-based model of benchmark
and compiler drift to quantify their individual and
combined impacts and shows that: A) Benchmark
drift is more significant than compiler drift and B)
For some benchmarks, drift has as much impact on
the CPI as changing the processor configuration

from a basic 4-way issue processor to an aggressive
8-way issue processor.

4. It illustrates the surprisingly large effect that drift
can have on the configuration of the optimized
processor configuration as determined by each
benchmark suite and compiler. Specifically, it
shows that, solely due to benchmark and compiler
drift, using an older benchmark suite and compiler
instead of the most current ones degrades the
performance (CPI) of the optimal processor
configuration by about 21% and its energy
efficiency (EDP) by about 19%.

5. It describes a few recommendations that can reduce
the amount of drift and help computer architects
account for the potential effects of drift.

In the remainder of this paper, Section 2 describes the simulation
methodology while Section 3 presents the performance bottleneck
analysis and its results. Section 4 presents the statistically-based
model of benchmark and compiler drift while Section 5 presents
the results of the processor configuration optimization algorithm.
Section 6 describes a few recommendations to account for and
minimize the effects of drift, Section 7 describes relevant related
work, and, finally, Section 8 summarizes the key results and
concludes.

2. SIMULATION METHODOLOGY
2.1 Benchmark and Input Sets
In this paper, we chose the SPEC benchmarks for two reasons.
First, this paper focuses on general-purpose computing – to
produce the broadest possible conclusions – and the de facto
standard for general-purpose computing benchmarks is SPEC.
General-purpose computing benchmarks are particularly interesting
to analyze from a drift perspective since they represent a wide
range of applications. Second, since there are multiple generations
of the SPEC benchmarks and since these benchmarks are relatively
easy to compile and simulate, choosing them makes it easier to
characterize the nature and quantify the magnitude of benchmark
drift.

Table 1. Benchmark type, and its SPEC serial number and
name in each SPEC benchmark suite

Benchmark Type SPEC 95 SPEC 2000

swim Floating-Point 102.swim 171.swim
mgrid Floating-Point 107.mgrid 172.mgrid

applu Floating-Point 110.applu 173.applu

gcc Integer 126.gcc 176.gcc

perl/perlbmk Integer 134.perl 253.perlbmk

vortex Integer 147.vortex 255.vortex

apsi Floating-Point 141.apsi 301.apsi

Table 1 lists each benchmark’s type, and its serial number and
name in SPEC 95 and SPEC 2000. Unless otherwise noted, to
simulate each benchmark, we used all of its reference input
sets. In this paper, we consider input set drift to be a part of
benchmark drift, i.e., we did not decouple the input set from the
benchmark. As a result, for a particular benchmark, we simulated
only the input sets that were part of that benchmark’s distribution,
e.g., primes and scrabbl only for 134.perl and diffmail,

makerand, perfect, and splitmail only for 253.perlbmk.
When we tried switching the input sets, only 2 of 7 benchmarks ran
to completion since the input sets from the other suite required
code that was not supported in that version of the benchmark.
Therefore, in the remainder of this paper, the term “benchmark
drift” implicitly refers to the aggregate “benchmark and input set
drift”.

2.2 Compilation Methodology
We used f2c to translate the FORTRAN benchmarks to C before
compiling them with a circa 1995 C compiler. (Section 3.4.1
characterizes the effect that f2c has on the simulation results.)
Otherwise, the other compilers that we used were a native circa
1995 C compiler (gcc 2.6.3), a native circa 2000 C compiler
(DEC cc / Compaq cc V6.3-025), and a native circa 2000
FORTRAN compiler (Compaq Fortran X5.3-1155). For the SPEC
2000 benchmarks that were compiled with a circa 2000 compiler,
we downloaded them from [23].

We chose to use different compilers for two key reasons. First,
using different compilers tended to maximize the potential effect of
compiler drift in the results, which gives us an upper-bound on the
impact of compiler drift. Second, we observed that processor
designers often use several different compilers, compiler versions,
and optimization levels during the design cycle for many reasons,
including: A) The convenience and familiarity of using legacy
traces (i.e., traces generated from binaries that were compiled
several years ago using old compilers), B) The desire to simulate
“vanilla” (unaggressive, microarchitecture-independent) code, C)
The introduction and availability of new compilers, new compiler
versions, and new optimizations during the design cycle, and D)
The need to maximize the processor’s performance via compiler
and flag mining after the processor is fabricated.

2.3 Simulators and Simulation Technique
To collect the results presented in this paper, we modified sim-
outorder from the SimpleScalar tool suite [5], version 3.0d to
include user-configurable instruction latencies and throughputs. To
determine the results presented in Section 5, we used wattch [3]
as the base simulator. The specific processor configurations for
each simulator are given in their respective sections.

To reduce the simulation time, we used 100M instruction
simulation points [18] with a max_K of 10. The simulation points
were either taken from the SimPoint webpage [19] or were
generated using SimPoint 2.0 [19]. Simulation points were
generated using the default configuration of SimPoint’s
runsimpoint script. To minimize the effect of cold-start cache
misses, we used assume-cache-hit for the first access to a cache
way [11].

3. ANALYSIS OF PER-SUITE AND PER-
BENCHMARK BENCHMARK AND
COMPILER DRIFT
When designing a processor, processor architects try to minimize
the effect of the performance bottlenecks that the benchmark
induces when running on the processor. Obviously, if the set of
performance bottlenecks in one benchmark suite is sufficiently
different from the set of performance bottlenecks in its successor
suite, then the configuration of the optimized processor design due
to each suite is likely to be significantly different. As described in
the introduction, this change was a contributing factor for the

lower-than-expected performance of the Itanium processor.
However, if the sets of performance bottlenecks are substantially
similar (i.e., the magnitude of each bottleneck is similar), then the
processor architects can be confident that their processor will be
able to efficiently run the benchmarks of the later suite.

Not only does this analysis show which performance bottlenecks
benchmark and compiler drift exacerbates, but it also shows which
ones it also alleviates. Additionally, analyzing benchmarks based
on their performance bottlenecks is processor configuration
independent (unlike using high-level metrics such as CPI and
cache miss rate). As a result, this approach is superior to using
high-level metrics to determine the existence and nature of
benchmark and compiler drift, as was done in prior work.

3.1 The Plackett and Burman Design: Finding
Performance Bottlenecks
To determine the performance bottlenecks in the processor, we
used a Plackett and Burman (P&B) design, with foldover, as
described in [26]. For computer architects, the P&B design is a
statistical technique that can be used to determine the significance
of the processor’s performance bottlenecks, with an O(N) cost,
where N is the number of bottlenecks. Adding foldover improves
the accuracy of the P&B design at a cost of doubling the number of
simulations. By comparison, using a design such as ANOVA
requires O(2N) simulations for only a little additional accuracy.

3.1.1 Mechanics of the Plackett and Burman design
The first step to use a P&B design is to construct the design matrix.
Since P&B designs exist only in sizes that are multiples of 4, the
base P&B design requires X simulations, where X is the next
multiple of four that is greater than N. The rows of the design
matrix correspond to different processor configurations while the
columns correspond to the parameters’ values in each
configuration. When there are more columns than parameters, then
the extra columns serve as placeholders and have no effect on the
simulation results.

For most values of X, the design matrix is simple to construct. The
first row of the design matrix is given in [17]. The next X – 2 rows
are formed by performing a circular right shift on the preceding

Table 2. Plackett and Burman design, with foldover (X=8)

A B C D E F G Exec. Time
+1 +1 +1 -1 +1 -1 -1 9
-1 +1 +1 +1 -1 +1 -1 11
-1 -1 +1 +1 +1 -1 +1 20
+1 -1 -1 +1 +1 +1 -1 10
-1 +1 -1 -1 +1 +1 +1 9
+1 -1 +1 -1 -1 +1 +1 74
+1 +1 -1 +1 -1 -1 +1 7
-1 -1 -1 -1 -1 -1 -1 112
-1 -1 -1 +1 -1 +1 +1 17
+1 -1 -1 -1 +1 -1 +1 76
+1 +1 -1 -1 -1 +1 -1 6
-1 +1 +1 -1 -1 -1 +1 31
+1 -1 +1 +1 -1 -1 -1 19
-1 +1 -1 +1 +1 -1 -1 33
-1 -1 +1 -1 +1 +1 -1 6
+1 +1 +1 +1 +1 +1 +1 4
-34 -224 -96 -202 -110 -170 32

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40
Bottleneck (Decreasing Order of B95, C95, I95 Percentage)

Pe
rc

en
ta

ge
 o

f V
ar

ia
ti

on
B95, C95, I95
B00, C00, I00
B95, C00, I95

L1 I-Cache Size (6.69%)

L2 Cache Latency (8.30%)

Number of Reorder Buffer Entries (5.17%)

Main Memory Access Latency (-16.61%)

Number of Integer ALUs (4.41%)

Noise Threshold

Figure 1. Effects of benchmark and compiler drift, and compiler-only drift on the most significant performance bottlenecks; in
descending order of SPEC 95 performance bottleneck significance.

row. The last line of the design matrix is a row of -1s. The gray-
shaded portion of Table 2 illustrates the construction of the PB
design matrix for X=8, a design appropriate for investigating 7 (or
fewer) parameters. When using foldover, X additional rows are
added to the matrix. The signs in each entry of the additional rows
are the opposite of the corresponding entries in the original matrix.
Table 2 shows the complete PB design matrix with foldover; rows
10 to 17 show the foldover rows.

A “+1”, or high value, for a parameter represents a value that is
higher than the range of normal values for that parameter while a
“-1”, or low value, represents a value that is lower than the range
of normal values. Ideally, the high and low values for each
parameter should be just outside of the normal range of values.
The set of low and high values that we used in this study is similar
to those found in [26].

3.1.2 Calculating the significance of performance
bottlenecks using the Plackett and Burman design
To compute the effect of each parameter, we multiply the execution
time by the parameter’s P&B value (+1/-1) for that configuration
and sum the resulting products across all configurations. For
example, the effect of parameter A is computed as follows:

EffectA = (1 * 9) + (-1 * 11) + … + (-1 * 6) + (1 * 4) = -34

Only the magnitude of an effect is important; its sign is essentially
meaningless. The effect that a parameter has represents how much
of the total variation in the output value is attributable to that
parameter. Therefore, if changing the value of a parameter results
in large changes in the execution time, then since there is a wide
distribution of execution times across a range of processor
configurations, there is high variability in the execution time.
Consequently, that parameter is a significant performance
bottleneck since changing its value results in large changes in the
execution time.

After simulation, we computed the percentage of the CPI
variability across all configurations that can be assigned to each
bottleneck, in a manner similar to how ANOVA computes its
percentages [15]. By examining the percentage effect that each
bottleneck has on the CPI for that suite or benchmark, we can

determine its absolute and relative significance.

3.2 Per-Suite Migration of Performance
Bottlenecks Due to Benchmark and Compiler
Drift
To determine the overall magnitude and scope of the problem, we
first compare how the performance bottlenecks migrate as a result
of benchmark and compiler drift. More specifically, we compare
the performance bottlenecks that are present in the processor when
running the SPEC 95 benchmarks that were compiled with a circa
1995 compiler and using 1995 input sets (i.e., B95, C95, I95)
against the bottlenecks when running the SPEC 2000 benchmarks
that were compiled with a circa 2000 compiler and using 2000
input sets (B00, C00, I00). We first analyze the performance
bottlenecks at the suite level, and then, in the following sub-
section, we examine individual benchmarks in more detail.

In Figure 1, the top and bottom lines represent the all-1995 (B95,
C95, I95) and the all-2000 design points, respectively, while the
middle line represents the effect that compiler drift has on the
performance bottlenecks. Therefore, to analyze the effect that the
combination of benchmark and compiler drift has on the
performance bottlenecks, we need to compare the top and bottom
lines. The specific contribution of compiler drift will be analyzed
later in this sub-section.

Figure 1 shows the percentage effect that each performance
bottleneck has on the total variation in the CPI, in terms of the total
percentage of variation due to single-factor bottlenecks only, i.e.,
not due to interaction bottlenecks. (Note: Single-factor bottlenecks
account for at least 73.8% of the total variation. In other words, all
interactions account for less than 27% of the total variation.) While
the results for both suites are shown, the bottlenecks are arranged
in descending order of significance for the 1995 bottlenecks for
both benchmark suites. This ordering allows for a bottleneck-to-
bottleneck comparison. Since the percentages are cumulative for
each bottleneck, the percentage for the fifth-most important
bottleneck represents the total variation in the CPI that is due to the
top-five most significant bottlenecks. Although the 1995 curve
looks smoother than does the 2000 curve, the uneven nature of the
2000 curve is due only to the ordering of the bottlenecks. An

increasing gap means that a particular bottleneck in SPEC 95 is
more significant than in SPEC 2000, while a decreasing gap means
that a particular bottleneck is less of a performance bottleneck in
SPEC 95. Ovals highlight cases where one bottleneck is
significantly more important in one suite than in the other.

In this figure, there are two placeholder bottlenecks. Since these
placeholders have no physical meaning, their presence in the figure
represents the noise threshold. (The noise is the result of using a
fractional multifactorial design (i.e., the P&B design) instead of a
full one (i.e., ANOVA).) The dotted line corresponds to the
location of the more significant of these two placeholders. Any
bottlenecks to the right of the dotted line are insignificant since
they are below the noise threshold.

Figure 1 shows that, of the 43 bottlenecks (41 real bottlenecks and
2 placeholders), only five had a difference in their respective
percentages that was greater than 4%. The (SPEC 95 – SPEC
2000) difference is shown in parenthesis for these bottlenecks; a
positive number means that that bottleneck is more significant in
SPEC 95. Four of the five bottlenecks (the number of reorder
buffer (ROB) entries, the L2 cache latency, the L1 I-cache size,
and the number of integer ALUs) were more of a problem for
SPEC 95 than for SPEC 2000. For the fifth bottleneck, the main
memory access time, the opposite is true; this bottleneck is much
more of a problem for SPEC 2000 than for SPEC 95. In SPEC
2000, this bottleneck accounts for about five times more variability
(4.28% vs. 20.90%). In other words, the main memory access time
is a much larger performance bottleneck in SPEC 2000 than in
SPEC 95.

The big picture from Figure 1 is that two key processor core
parameters (the number of ROB entries and the number of integer
ALUs) are slightly more important in SPEC 95. However, while
the L2 cache latency is a major performance bottleneck in SPEC
95, this performance bottleneck migrates to the main memory level
in SPEC 2000. Finally, the L1 I-cache size is more significant in
SPEC 95 because its cycle count is not heavily correlated to the
main memory latency. Rather, the cycle count is affected by the
instruction throughput, which subsequently increases the
significance of the L1 I-cache size. From these results, the key
conclusion of this sub-section is that benchmark and compiler drift
exists between the SPEC 95 and SPEC 2000 benchmarks, when
compiled with circa 1995 and 2000 compilers, respectively, since
there are non-trivial differences in the most significant performance
bottlenecks.

To analyze what effect compiler drift may have on the significance
of the performance bottlenecks, we compare the middle line with
the top line. Since the only difference between these two lines is in
what compiler was used, if the two lines exactly track, then
compiler drift does not exist. If the two lines diverge, then
compiler drift exists.

To analyze the contribution that compiler drift makes towards the
overall drift, we compare the middle line with the bottom line.
Since the difference between the top and bottom lines is the total
amount of drift and since the only difference between the top and
middle lines is due to the compiler, the distance between the
middle and bottom lines represent how much of the total drift is
not accounted for by the compiler. Therefore, if the middle and
bottom lines exactly track, then benchmark drift does not exist and
all of the drift that does exists between the B95, C95, I95 and B00,
C00, I00 design points is due only to compiler drift. On the other
hand, if the middle line is much closer to the top line, then

compiler drift is less significant than benchmark drift.

Of the 25 performance bottlenecks that are above the noise
threshold, since the compiler line does not touch the 1995 line at
any point, we conclude that compiler drift is a non-trivial
phenomenon. Furthermore, with the possible exceptions of the L2
cache latency (Bottleneck #2) and the main memory access latency
(Bottleneck #6), since the compiler line tracks the 2000 line fairly
well, we also conclude that compiler drift accounts for a significant
fraction of the total drift, though not necessarily the majority
fraction. (Section 4 quantifies the amount of drift that is due to the
benchmark, compiler, and their interaction.)

To determine if the compiler drift has a widespread effect, or if it is
just limited to the floating-point or integer benchmarks, we
examined the corresponding versions of Figure 1 for each
benchmark. (Due to space limitations, the figures for all
benchmarks are not presented in this section, although the
following sub-section presents the figures for mgrid and gcc.) The
results show that compiler drift has very little effect for some
benchmarks, but it has a large effect for others. For the three
integer benchmarks (gcc, perl/perlbmk, and vortex) and for apsi,
compiler drift is virtually non-existent as the compiler line almost
completely overlays the 1995 line. However, for the three
remaining floating-point benchmarks, the compiler line tracks the
2000 line fairly closely, which indicates that compiler drift exists
and is very significant.

3.3 Per-Benchmark Migration of Performance
Bottlenecks Due to Benchmark and Compiler
Drift
Figures 2A and 2B show the comparison of the performance
bottlenecks for mgrid and gcc, respectively. The organization of
each graph is the same as in Figure 1, with the exception that the
performance bottlenecks that are less significant than the noise
threshold are not shown. We present mgrid since it is
representative of the results for the floating-point benchmarks and
we present the results for gcc since it clearly shows that most of the
drift is due to benchmark drift.

As Figure 2A shows, two of the most significant performance
bottlenecks in 107.mgrid are the ROB size and the latency of
integer multiplies, while less significant performance bottlenecks
include the latencies of main memory and L2 cache accesses, both
of which are significant bottlenecks of 172.mgrid. Therefore, we
conclude that in 107.mgrid, the memory sub-system bottlenecks
are relatively minor performance bottlenecks as compared to the
instruction execution performance bottlenecks – such as the
number of ROB entries, the number of integer ALUs, and the
integer multiply latency. By contrast, in 172.mgrid, in addition to
the ROB, the most significant performance bottlenecks are the L2
cache size, the memory latency, and the L2 cache latency.
Therefore, mgrid clearly shows how the performance bottlenecks
move from the processor core and the levels of memory closest to
the processor core in the SPEC 95 benchmarks to the memory sub-
system or to levels of memory that are further from the processor
core in the SPEC 2000 benchmarks.

Figure 2B also shows that the performance bottlenecks of gcc also
shift towards the levels of memory further away from the
processor, albeit in a different way. In contrast to 107.mgrid, the
performance bottlenecks of 126.gcc are more heavily concentrated
in the processor’s instruction-fetch components (branch predictor,
L1 I-cache size, etc.), as opposed to its instruction-execute

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14
Bottleneck (Decreasing Order of B95, C95, I95 Percentage)

Pe
rc

en
ta

ge
 o

f C
PI

 V
ar

ia
tio

n
B95, C95, I95
B95, C00, I95
B00, C00, I00

Main Memory Access Latency (-16.03%)

L2 Cache Size (-5.15%)

Integer Multiply Latency (13.36%)

Number of ROB Entries (36.02%)

L2 Cache Latency (-8.55%)

A. mgrid

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30
Bottleneck (Decreasing Order of B95, C95, I95 Percentage)

Pe
rc

en
ta

g
e

o
f C

P
I V

ar
ia

ti
on

B95, C95, I95
B95, C00, I95
B00, C00, I00

L2 Cache Size (-11.20%)

Main Memory Access Latency (-3.41%)

L2 Cache Latency (17.56%)

L1 I-Cache Size (19.92%)

B. gcc

Figure 2. Effects of benchmark and compiler drift, and compiler-only drift on the most significant performance bottlenecks; in
descending order of SPEC 95 performance bottleneck significance.

components (number of ALUs and multiply/divide units,
instruction latencies, etc.). Therefore, while the performance
bottlenecks of 126.gcc also shift from the processor core towards
levels of memory further away from the processor, they are on the
instruction-fetch side, instead of in the instruction-execute side.
Furthermore, since the L2 cache latency is more of a performance
bottleneck in 126.gcc, but the L2 cache size is not, this indicates
that the L2 cache is able to service most of the memory accesses in
126.gcc. As a result, the L2 cache size is not a performance
bottleneck.

Finally, of the five remaining benchmarks, drift is a significant
problem for swim and applu, due to the increased significance of
the memory sub-system parameters. Drift is not as severe a
problem for apsi, and is not a problem at all for perl/perlbmk and
vortex.

3.4 Potential Simulation Methodology Effects
on the Simulation Results and Conclusions
3.4.1 Potential simulation methodology effects on the
simulation results and conclusions
As described in Section 2.1, since a circa 1995 FORTRAN
compiler was not available, we used f2c to translate a benchmark
from FORTRAN to C before compiling the resulting C code with a
circa 1995 C compiler. Naturally, the key question about this
methodology is what effect does f2c have on the results and, more
importantly, the overall conclusions? To characterize the effect that
f2c has on the simulation results, we compared the performance
bottlenecks when a native FORTRAN compiler was used and when
using f2c and a C compiler. More specifically, we compiled the
three SPECfp 2000 benchmarks (171.swim, 172.mgrid, and
173.applu) where drift was a significant problem (drift was not a
significant problem for 301.apsi) with a native circa 2000
FORTRAN compiler and also by using f2c to translate the
benchmarks into C first before compiling them with a native circa
2000 C compiler (f2c+cc). Then we applied a P&B design to
both sets of binaries to characterize their performance bottlenecks.

The results show that for all but one of the bottlenecks, f2c has
very little or no effect on their significance. In other words, f2c
does not make these bottlenecks significantly more or less
important. The one exception is the number of ROB entries; using
f2c overestimates its significance, more so for 171.swim and
172.mgrid than for 173.applu. The larger significance of the ROB

size is due to the fact that the f2c+cc generated code contains
larger pieces of sequential code, e.g., some code sequences require
longer chains of dependent instructions because the compiler has
less knowledge about the code and hence can optimize less, which
consequently increases the importance of a large ROB, since the
ROB is another means of extracting a large amount of parallelism.

There are two key conclusions from this sub-section. First, with the
exception of overestimating the significance of the number of ROB
entries for the floating-point benchmarks, using f2c+cc has very
little effect on the results in this paper. And although it does
overestimate the significance of the number of ROB entries, it does
not change the conclusions in the previous section; namely, that
benchmark and compiler drift are significant problems and that the
performance bottlenecks migrate from levels of memory closer to
the processor to levels that are further away, as a result of drift.
Additionally, it does not affect any of the results and conclusions
in the rest of this paper.

3.4.2 Potential SimPoint impact
It is worth noting that the results in Figures 1, 2A, and 2B, and
Table 3 represent a conservative estimate of drift due to the
mechanics of how the SimPoint tool chooses simulation points
That is, drift is likely to be more severe for the benchmarks with
complex phase behavior than the results in the above figures and
table would indicate because SimPoint, especially for lower
max_K values (we used a max_K of 10), does not choose phase
transitions to be simulation points. Using these simulation points
may underestimate the effect of the memory access latency [27].
Therefore, benchmarks that spend a significant number of cycles
servicing memory accesses, i.e., the SPEC 2000 benchmarks, are
likely to have higher-than-expected memory sub-system
performance, which partially mitigates the shift of the performance
bottlenecks to the memory sub-system that we observed in these
experiments.

4. STATISTICALLY-BASED DRIFT
MODEL
One question from the analysis above is how much of the total drift
can be attributed to the benchmark, the compiler, and the
interaction of the two? To answer this question we use an ANOVA
design [15] to determine what fraction of the CPI variation is due
to benchmark drift, compiler drift, and benchmark-plus-compiler-
interaction drift when moving between the B95, C95, I95 and B00,

Table 3. Percentage of total drift variation accounted for by
each drift component

Benchmark Type
Benchmark

Only
Compiler

Only
Benchmark
+ Compiler

swim FP 22.12 75.91 1.97
mgrid FP 18.63 69.67 11.70

applu FP 0.91 97.75 1.35

gcc Int 97.11 0.04 2.85

perlbmk Int 78.57 10.10 11.33

vortex Int 88.64 4.13 7.23

apsi FP 8.67 14.96 76.38

Int Average 88.11 4.76 7.13
FP Average 12.58 64.57 22.85

Suite Average 44.95 38.94 16.11

C00, I00 design points.

4.1 ANOVA Design Methodology
For the following four ANOVA testcases: 1) B95/C95, 2)
B95/C00, 3) B00/C95, and 4) B00/C00, we simulated a very wide
range of configurations (88 in all). Although simulating this many
different processor configurations greatly increases the simulation
time – as compared to simulating a single processor configuration
– there are two key advantages in doing so. First, simulating only a
single processor configuration for each testcase may
unintentionally skew the results towards one of the three drift
components. Obviously, simulating 88 processor configurations
minimizes the possibility of inadvertent skew, especially since the
different configurations that we simulated corresponded to the
“corners” of the design space. Second, and more importantly, by
“replicating” the simulation results for each testcase, we can
calculate the experimental “error” associated with the variation in
CPIs due to different processor configurations. In other words, we
can determine how much of the overall variation in the CPIs is due
to each factor, i.e., benchmark drift, compiler drift, benchmark-
plus-compiler interaction drift, and processor configuration.

However, to verify if these 88 atypical processor configurations are
either overstating the results or obscuring other important
conclusions, we repeated the ANOVA design for 4 realistic
processor configurations (base 4-way issue, aggressive 4-way
issue, base 8-way issue, and aggressive 8-way issue). Unless
otherwise stated, the results for 88 and 4 processor configurations
were extremely similar and the conclusions were identical.

4.2 Benchmark and Compiler Drift vs.
Processor Configuration Variation
The first result that we extract from the 88 processor configuration
simulation results is that the processor configuration is responsible
for approximately nine times the amount of variation in the CPI as
compared to the total of all three drift components. However, it is
important to point out that the amount of CPI variation due to
different processor configurations is artificially high since the 88
processor configurations correspond to the corners of the design
space. For example, one processor configuration has an 8-entry
ROB, a single integer ALU, a 2-entry LSQ, and a 2KB, direct-
mapped L1 D-cache while another processor configuration has a
64-entry ROB, four integer ALUs, a 64-entry LSQ, and 128KB, 8-
way L1 D-cache. Consequently, one can, to a certain degree,

expect large variations in the CPI solely due to the processor
configuration.

For the 4 realistic processor configurations, the results were
extremely similar to the results of the 88 configurations for some
benchmarks. However, for other benchmarks, the percentage of the
CPI variation that is a result of drift is almost the same as the
percentage of the CPI variation that is accounted for by the
processor configuration. For example, for perl/perlbmk, benchmark
drift accounts for 45.7% of the total CPI variation while changing
the processor configuration accounts for 48.8%. This particular
result shows that benchmark drift can have as much of an impact
on the CPI as changing the processor configuration from a simple
4-way issue processor to an aggressive 8-way issue one. Or, in
other words, benchmark drift has as significant an impact on the
execution time of benchmarks such as perl/perlbmk as radically
changing the processor configuration.

Our conclusion from this sub-section is that the processor
configuration generally has more impact on the variation in the
CPIs than benchmark and compiler drift does. For some
benchmarks, however, drift and processor configuration account
for similar percentages of the CPI variation.

4.3 Statistically-Based Drift Model Results
Table 3 shows the percentage of the CPI variation that is accounted
for by each of the three drift components, after removing the
variation due to the 88 processor configurations. The results for the
4 realistic processor configurations were extremely similar.

Across all seven benchmarks, these results show that benchmark
drift is only slightly more significant than compiler drift. However,
for the integer benchmarks taken as a group, benchmark drift
accounts for nearly all of the CPI variation that is attributable to
drift. The opposite conclusion is true for the floating-point
benchmarks, although the difference is not quite as dramatic. In
these benchmarks, compiler drift is the dominant reason for the
variation in CPI, although the benchmark-plus-compiler interaction
accounts for a significant percentage of the total CPI variation.
Based on these results, we conclude that benchmark drift is at least
15% ((44.95-38.94) / 38.94) more significant than compiler drift.
Furthermore, both drift components are at least twice as significant
as benchmark-plus-compiler-interaction drift.

5. IMPACT OF DRIFT ON THE OPTIMAL
PROCESSOR DESIGN CONFIGURATION
The two key conclusions from the previous sections are that
benchmark and compiler drift exist and that the performance
bottlenecks migrate towards levels of memory further away from
the processor. While these are important conclusions, the key
question is what, if any, differences in the optimal processor
configuration result from benchmark and compiler drift and the
subsequent migration of the performance bottlenecks? And, if there
is a difference, what performance impact does it make? To answer
these questions, this section studies how drift affects the optimal
processor configuration. Specifically, the question we address is
how much of the performance potential is lost due to drift, and for
what reasons? With this goal in mind, we optimize one processor
configuration for the B95, C95, I95 (the “SPEC 95 optimized
processor”) design point and another processor for B00, C00, I00
(the “SPEC 2000 optimized processor”) design point. The former
design point is what an architect might start at when designing a
new processor in 1995, while the second design point would

Figure 3. One-Parameter-At-A-Time Algorithm to Find the
Optimal Processor Configuration

correspond to the potential design point when the processor is
released in 2000. If there is a considerable difference in the two
optimal processor configurations, we can conclude that drift has a
significant impact on processor design, and then we can determine
how drift affects the optimal configuration. We can also quantify
the lost performance potential by comparing the performance of
SPEC 2000 when executed on the SPEC 95 optimized processor
compared to the performance of SPEC 2000 when run on the
SPEC 2000 optimized processor.

Before presenting the results from this study, we first discuss our
optimal processor design search algorithm and our optimization
criterion.

5.1 Optimal Design Point Search Algorithm
To determine the optimal processor configuration, we used the
one-parameter-at-a-time optimization algorithm. As its name
implies, in this algorithm, only one parameter is optimized (i.e.,
varied) at a time. After optimizing each parameter, the value of that
parameter is set to the value that yields the optimal result and
then the next parameter is optimized. For example, assume that we
are trying to optimize parameters x, y, and z that start with an initial
configuration of x3, y1, and z1. If x is the first parameter to
optimize, we measure the optimality of the following processor
configurations {x1, y1, z1}, {x2, y1, z1}, … , {xn-1, y1, z1}, {xn, y1, z1},
where n is the number of values parameter x can be set to. If
configuration {x2, y1, z1} is optimal, we change the value of x from
x3 to x2, and then optimize parameter y across its range of values.

After optimizing all three parameters, we check to see if there was
any change in the optimal configuration since the last time
parameter z was optimized. If not, then the last configuration is the

optimal one. If so, then we re-optimize all three parameters
repeatedly until the configuration does not change for a single
iteration of all three. The specifics of the algorithm are shown in
Figure 3.

Although this search algorithm optimizes only one parameter-at-a-
time, by repeatedly optimizing all parameters until the processor
configuration “converges”, this optimization algorithm minimizes
the likelihood of getting trapped in local minimum. For these
simulations, several iterations were required until the configuration
stabilized. Additionally, to further minimize the likelihood of
getting trapped in a local minimum, we optimize the parameters in
descending order of significance (i.e., the most significant
parameter is optimized first, then the second most significant
parameter is optimized next, and so on). Finally, we chose this
algorithm based on our observation that processor designers use
this type of algorithm due to its fast search time.

Of the 41 performance bottlenecks, the ten most significant ones
for B95, C95, I95 were also in the list of the ten most significant
ones for B00, C00, I00, but just in a different order. Since the11th,
12th, etc. most significant bottlenecks from each design point were
different, we were unable to find another set of bottlenecks to
optimize over such that we would be optimizing over the Top N
bottlenecks from both design points, and that did not require
optimizing over an intractable number (i.e., all 41) of bottlenecks.
Therefore, we optimized over just these ten bottlenecks, which are
listed in Table 4 along with their range of candidate values. The
range of possible values was based on current processors. Finally,
the third column shows the initial configuration of both processors,
which was randomly chosen.

Although the cache access latencies are not listed, each of these
latencies were based on the current size, associativity, and block
size of each cache. For the L1 caches, the latencies ranged from 1
to 4 cycles, while for the L2 cache, the latency ranged from 7 to 12
cycles.

To reduce the simulation time, we fixed the number of load-store
queue (LSQ) entries to always be half of the number of ROB
entries. Therefore, optimizing for the number of ROB entries really
optimized both the number of ROB entries and the number of LSQ
entries. To reduce the simulation time further, since several
serialized iterations were required before the configuration
stabilized, we used only a single input set for 126.gcc (cp-decl),
134.perl (scrabbl), 176.gcc (expr), 253.perlbmk (splitmail
957), and 255.vortex (lendian3). We chose these input sets
since their vector of CPIs from the P&B design simulations was
closest to the centroid of the space for that benchmark.

Table 4. Performance bottlenecks to optimize, possible values, and initial configuration

Bottleneck Possible Values Initial Configuration

Number of Reorder Buffer (ROB) Entries 32, 64, 96, 128, 160 32
L2 Cache Associativity 2-Way, 4-Way, 8-Way 2-Way

L2 Cache Size 512KB, 1024KB, 2048KB, 4096KB 2048KB
L1 I-Cache Size 32KB, 64KB, 128KB 32KB

Branch Predictor Entries 1024, 2048, 4096 4096
Number of Integer ALUs 2, 3, 4 3

L1 D-Cache Size 16KB, 32KB, 64KB 16KB
L1 D-Cache Associativity 2-Way, 4-Way, 8-Way 2-Way

L1 I-Cache Block Size in Bytes 32, 64 32
Number of Load-Store Queue Entries 0.5 * Number of ROB Entries 16

1. Assign i = 0 and choose an initial configuration as the
current optimal configuration Ci,0

2. For each architectural parameter j, with 0 < j ≤ n,
a. Determine the optimal value for parameter j while

keeping the other parameters at their current optimal
configuration Ci,j-1 values

b. Update the current optimal configuration Ci,j with the
latest optimal configuration for the given parameter

3. If the current optimal configuration Ci,n equals the
previously obtained optimal configuration Ci-1,n, stop and
report Ci,n as the optimal configuration; otherwise,
increment i and go to step 2.

Table 5. Optimal processor configurations for SPEC 95 and SPEC 2000 derived processors, arranged in decreasing order of SPEC
2000 parameter significance

Bottleneck SPEC 95 SPEC 2000 Comment

Number of Reorder Buffer (ROB) Entries 96 160 SPEC 2000 optimized processor opts for a much larger ROB
L2 Cache Associativity 4-Way 4-Way

L2 Cache Size 2048KB 1024KB SPEC 2000 optimized processor opts for a smaller L2 cache
L1 I-Cache Size 32KB 32KB

Branch Predictor Entries 4096 4096
Number of Integer ALUs 4 4

L1 D-Cache Size 16KB 16KB
L1 D-Cache Associativity 4-Way 4-Way

L1 I-Cache Block Size in Bytes 64 64
Number of Load-Store Queue Entries 48 80 SPEC 2000 optimized processor opts for a much larger LSQ

Table 6. Percent difference in CPI and EDP between the SPEC 95 and SPEC 2000 optimized processors for two SPEC 2000
processor L2 cache sizes (1024KB (optimal) and 2048KB); Percent difference = (SPEC 95 – SPEC 2000) / SPEC 2000

 1024 KB L2 Cache (Optimal) 2048KB L2 Cache
Benchmark

Percent CPI Difference Percent EDP Difference Percent CPI Difference Percent EDP Difference
171.swim 52.41 74.24 53.02 67.93
172.mgrid 14.56 12.49 16.28 10.28
173.applu 31.44 36.90 32.21 33.04
176.gcc -3.73 -16.04 0.86 -12.93

253.perlbmk -1.78 -13.41 1.96 -10.90
255.vortex -0.68 -10.92 4.27 -7.29
301.apsi 12.16 6.62 11.46 2.37

Average 20.84 18.55 22.73 17.19

Consequently, using a sub-set of the input sets should have very
little effect on the final optimized configuration.

Without an associated “cost” to each of the bottlenecks listed in
Table 4, the optimization algorithm will predictably choose the
largest value of each parameter in an effort to decrease the
execution time. Therefore, in this paper, we define the optimal
processor configuration to be the one with the minimum energy-
delay product (EDP), where EDP = EPI * CPI (EPI = Energy per
Instruction and CPI = Cycles per Instruction). The energy-delay
product is a commonly used metric that quantifies the energy-
efficiency of general-purpose microprocessors [4]. While there are
alternative optimization cost functions in commercial processor
design, these cost functions are very complex since they utilize a
wide range of optimization criteria and design constraints, such as
CPI, cycle time, chip area, power budget, heat transfer, power
density, reliability, etc. In this paper, however, we use the simple
and easy-to-understand EDP optimization criterion.

5.2 Optimized Processor Configuration
Results and Discussion
Table 5 presents the optimized processor configuration for each
benchmark suite. The first column lists the performance
bottlenecks that we optimized for. The second and third columns
list the final optimal processor configuration when optimizing for
the SPEC 95 and SPEC 2000 benchmarks, respectively. The fourth
column summarizes the difference, for each parameter, between the
two processors.

The comment column in Table 5 shows that there are two key
differences between the SPEC 95 and SPEC 2000 optimized
processors. First, the configuration of the SPEC 2000 optimized
processor uses a much larger ROB than the SPEC 95 optimized

processor, even though using f2c to compile the SPECfp 95
benchmarks may result in an artificially large ROB. On the other
hand, the SPEC 2000 optimized processor selects the largest
number of ROB entries possible. While this result may seem
surprising from an EDP point-of-view (increasing the number of
ROB and LSQ entries is very expensive from an energy point-of-
view), there are several reasons that explain this
outcome. First and foremost, the number of ROB entries is the
most significant bottleneck in SPEC 2000. As a result, it is not that
surprising that the SPEC 2000 optimized processor would opt for a
large ROB, even given the high energy cost. Second, a processor
with a larger ROB can hide the L2 cache misses by exploiting
parallelism. Third, in addition to buffering a larger number of loads
and stores, an 80-entry LSQ – at least in SimpleScalar – essentially
functions as a de facto L0 D-cache, which increases the chances for
store-forwarding, reduces the number of L1 D-cache cast-outs, and
slightly decreases the number of L1 D-cache and L2 cache accesses
(by satisfying load accesses via store forwarding). Therefore, a
larger ROB and LSQ is more efficient from an EDP point-of-view
due to its ability to hide the memory sub-system access latency and
since the LSQ functions as a low-latency, fully-associative L0 D-
cache.

The SPEC 2000 optimized processor also opts for a smaller L2
cache (1024KB vs. 2048KB). However, as the results in Section 3
showed, since the memory latency is more significant of a
performance bottleneck in SPEC 2000, it is surprising to see that
the L2 cache of the SPEC 2000 optimized processor is smaller than
that of the SPEC 95 optimized processor’s. However, there are
three reasons for this difference. First, the larger LSQ reduces the
number of L2 cache accesses (by using store forwarding to
decrease the number of L1 D-cache accesses, which, in turn,
reduces the number of L2 cache accesses), which decreases the

significance of the L2 cache as a performance bottleneck. Second,
although a larger L2 cache increases the hit rate, the associated
trade-off is that the cache access latency increases by a cycle when
the L2 cache doubles in size. Third, although the CPI for a
processor with a 2048KB L2 cache is 1.54% lower than a
processor with a 1024KB L2 cache, it consumes 2.74% more
energy, which results in a sub-optimal EDP. Nevertheless, since
the difference in the EDPs between the two L2 sizes was only
1.15%, the final L2 cache size for the SPEC 2000 optimized
processor was very close to being a toss-up.

5.3 Effect of Different Optimized
Configurations on the Performance and
Energy-Delay Product
Although the results from Section 3 and the previous sub-section
concluded benchmark and compiler drift exist and is a significant
enough of a problem to alter the optimized processor
configuration, the singular outstanding question is how much
difference – in terms of the CPI and EDP – can drift actually have?
To answer this question, we compare the performance (CPI) and
the EDP of the SPEC 95 and SPEC 2000 optimized processors
when both processors run the SPEC 2000 benchmarks, which is
the situation that a processor designer would have faced when
originally designing the processor in 1995. Table 6 presents the
CPI and EDP results of this comparison. The first column lists the
benchmarks, while the second/fourth and third/fifth columns list
the difference in the CPIs and EDPs, respectively, when the SPEC
2000 optimized processor is the baseline ((SPEC 95 – SPEC 2000)
/ SPEC 2000)). Therefore, larger, positive numbers means that the
SPEC 2000 optimized processor achieves a lower CPI (i.e., higher
performance) or a lower EDP (i.e., better energy efficiency).

Overall, the results show that the CPI of the SPEC 2000 optimized
processor with a 1024KB L2 cache is 20.84% better than the CPI
of the SPEC 95 optimized processor, while the EDP is 18.55%
better. Consequently, we conclude that benchmark and compiler
drift can result in large performance and EDP differences between
the optimized processor configurations. The large difference in the
CPIs and EDPs are strictly due to the floating-point benchmarks,
which is not surprising given that the most significant performance
bottleneck in the SPECfp 2000 benchmarks is the number of ROB
entries and that the SPEC 2000 optimized processor has an
additional 64 ROB and 32 LSQ entries. On the other hand, since
the significance of the L2 cache size as a performance bottleneck is
much lower than the significance of the number of ROB entries,
increasing the L2 cache size (which also incurs an increase in the
L2 cache access latency) does not significantly improve the CPI.

For the integer benchmarks, since the ROB is not one of the most
significant performance bottlenecks, using a larger ROB does not
result in significant performance improvements, but does
significantly increase the EDP. On the other hand, since the LSQ is
about as significant a performance bottleneck as the L2 cache size,
the larger LSQ helps palliate the effect of the L2 cache size as a
performance bottleneck. Lastly, although the CPI decreases by
1.54% as a result of the larger L2 cache size, the associated EPI
increase of 2.74% more than offsets the CPI gain from an EDP
point-of-view, which makes this configuration less than optimal.

The key conclusion from this section is that using older
benchmarks and compilers for processor design can result in
processor configurations that are significantly different than when
the latest benchmarks and compilers are used, and that the

performance and energy efficiency of the former configurations can
be dramatically lower – in this case, a CPI and EDP that are
20.84% and 18.55% higher, respectively. The combination of this
conclusion and one from the previous section – that drift can have
as significant an impact on the CPI as radically changing the
processor configuration – show that processor designers and
computer architecture researchers need to be conscious of
benchmark and compiler drift in their studies since it can
significantly distort their simulation results. Furthermore, these
conclusions should also encourage architects to continually
examine and characterize benchmark and compiler trends.

6. RECOMMENDATIONS TO MINIMIZE
AND ACCOUNT FOR THE EFFECTS OF
DRIFT
The results in Section 4 showed that benchmark and compiler drift
can have as much impact on the CPI as radical changes in the
processor configuration, while the results in Section 5 showed that
drift can change the optimized processor configuration enough to
result in performance that is significantly sub-optimal. As a result,
since this phenomenon has the potential to not only gravely affect
the performance of commercial processors, but to influence, subtly
or otherwise, the directions of computer architecture research, it is
very important for computer architects to account for and/or
minimize the effects of drift. Accordingly, we make the following
recommendations:

1. Benchmark suites and compilers, such as SPEC and
gcc, respectively, should be updated more
frequently.

2. Parameterizable benchmarks, such as those
described in [1, 2, 20] should be used to project the
potential effects of benchmark and compiler drift.

Since the characteristics of future benchmarks and compilers
change over time, updating both more frequently minimizes the
“abruptness” of the changes in their characteristics. If computer
architects follow these recommendations, although there will be
less drift between successive versions of a benchmark suite or
compiler, the total amount of drift over the same amount of time
(i.e., without more frequent updates) will still be the same.

As their name implies, with parameterizable benchmarks, the
characteristics of the benchmark can be easily adjusted by
changing the value of a parameter. By using a range of parameter
values, computer architects may be able to mimic the
characteristics of future benchmarks, which may allow them to
properly compensate for the effects of drift. In other words,
computer architects can use parameterizable benchmarks to
perform “what-if” experiments to help optimize the processor’s
configuration to account for future drift.

Finally, it is important to note that while these recommendations
minimize the effects of drift, they do not eliminate them as
benchmark and compiler drift cannot be eliminated.

7. RELATED WORK
Phansalkar et al. [16] studied how the SPEC CPU benchmarks
(1989, 1992, 1995, and 2000) change over time. They looked at
microarchitecture-independent characteristics in order to identify
changes in the workload and used principal component analysis to
characterize and compare the benchmark suites, but did not

evaluate the impact of drift on processor design. Their results
showed that other than dramatic increases in the dynamic
instruction count and increasingly poor temporal data locality,
fundamental program characteristics such as branch and ILP
characteristics are generally static. Our paper also studies the effect
that workload changes have on processor’s performance, adds
compiler drift as a factor, and constructs a drift model.

Vandierendonck and De Bosschere compare the data memory
behavior of SPEC 95 and SPEC 2000 in [22]. Their results show
that some SPEC 95 benchmarks have behavior that is very
different than the behavior of the other benchmarks. Furthermore,
their results show that this behavior can be easily improved, which
SPEC addressed for selected benchmarks in the SPEC 2000 suite.
Calder et al. [6] compared the characteristics of C and C++
programs including: function and basic block sizes, instructions
between conditional branches, call stack depth, use of indirect
function calls and memory operations, and measurements of cache
locality. The C programs that they examined included the SPECint
92 suite, while the remaining C and all of the C++ programs were
gathered from a variety of sources. Consequently, their results did
not explicitly examine benchmark drift.

Standardized benchmark suites, such as the various SPEC
benchmark suites [21], are updated regularly. A benchmark may be
modified or removed when it is no longer representative or has
reproducible results, or if compiler optimizations drastically reduce
its execution time. Examples of the latter include matrix300 from
SPEC 89 [12] and eqntott from SPEC 92 [24]. In the case of sc,
system libraries had too large an impact on the running time of the
benchmark [7]. As a result, all of these programs were removed
from subsequent SPEC benchmark suites. Another compelling
reason to update benchmarks is benchmark drift. SPEC recognizes
that they have to “keep pace with the breakneck speed of
technological innovation” [13] and intentionally selected SPEC
2000 benchmarks such that they consume much more memory than
SPEC 95 [14].

Given the prevalent use of benchmarks in computer architecture,
one would expect that many quantitative metrics or methods have
been developed to evaluate and improve the appropriateness of a
benchmark suite. However, few efforts have been directed in this
area. Dujmovic et al. [9] developed metrics to estimate the size and
redundancy of a benchmark suite. Using these metrics, they
showed that the SPEC benchmark suite has increased in size (i.e.,
more differences between processors can be detected) and that
redundancy decreased between the SPEC 89 and SPEC 95
versions. Eeckhout et al. [10] developed a method to gauge
benchmark similarity (and thus redundancy). By applying cluster
analysis techniques on workload characteristics, identifying
benchmarks that are similar is relatively easy.

8. CONCLUSION
As the time required to design a processor continues to increase, it
is increasingly likely that different generations of a benchmark
suite and different versions of the same compiler will be used in
the design process. If the characteristics of the successor suite or
compiler are significantly different than those of their respective
predecessors, then the design decisions that the processor
architects make early in the design cycle may be sub-optimal when
the performance is measured using the most current suite available
after the processor is fabricated and the benchmarks are compiled
with the latest compiler. We coin the terms benchmark drift and
compiler drift to refer to the phenomenon of time-varying

benchmark and compiler characteristics, respectively.

Our results show that both benchmark and compiler drift exist and
are potentially significant problems. Furthermore, the most
significant performance bottlenecks for the SPEC 95 benchmarks
are in the processor core and in the levels of memory closest to the
processor, while these bottlenecks migrate to levels of memory
further away from the processor core for the SPEC 2000
benchmarks. Our results also show that benchmark drift is at least
15% more significant than compiler drift, while both components
are at least twice as significant as the drift due to the interaction of
the benchmark and compiler. Furthermore, the results show that for
some benchmarks, perl/perlbmk in particular, drift has as
significant effect on the CPI as does dramatically changing the
processor configuration.

After using the one-parameter-at-a-time optimization algorithm and
the energy-delay product (EDP) as the optimization criterion to
find the optimal processor configuration, the SPEC 2000 optimized
processor opts for a much larger reorder buffer (160 entries vs. 96
entries), but selects an L2 cache that is half the capacity as the
SPEC 95 optimized processor’s L2 cache. These differences in the
optimal processor configurations led to very large differences in
the CPI and EDP. More specifically, the CPI for the SPEC 2000
optimized processor is 20.84% lower than in the SPEC 95
optimized processor, while the EDP is 18.55% lower.

Finally, to help computer architects compensate for the effects of
drift for research and design, we recommend that computer
architects: 1) Update benchmark suites and compilers more
frequently and 2) Use parameterizable benchmarks to (potentially)
project the characteristics of future benchmarks and compilers.

In summary, the two key conclusions from this paper are that
benchmark and compiler drift exist and that drift can significantly
affect processor design and its subsequent performance. Or, in
other words, the exigency of benchmark and compiler drift is that
tomorrow’s processors are being designed using yesterday’s
benchmarks and compilers, with potentially serious performance
degradation and energy implications due to significantly different
characteristics.

9. Acknowledgements
This work was supported in part by IBM, Intel, the University of
Minnesota Digital Technology Center, the Minnesota
Supercomputing Institute, Ghent University, and the European
HiPEAC network of excellence. Hans Vandierendonck and Lieven
Eeckhout are Postdoctoral Fellows of the Fund for Scientific
Research – Flanders (Belgium) (F.W.O. Vlaanderen).

10. REFERENCES
[1] Bell Jr., R. and John, L., “The Case for Automatic Synthesis

of Miniature Benchmarks,” In Proceedings of the Workshop
on Modeling, Benchmarking, and Simulation (MoBS ’05)
(Madison, WI, USA, June 4-8, 2005), 88-97.

[2] Bell Jr., R. and John, L., “Improved Automatic Testcase
Synthesis for Performance Model Validation,” In Proceedings
of the International Conference on Supercomputing (ICS ’05)
(Cambridge, MA, USA, June 20-22, 2005), 111-120.

[3] Brooks, D., Tiwari, V., and Martonosi, M., “Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations,” In Proceedings of the International
Symposium on Computer Architecture (ISCA ’00)

(Vancouver, Canada, June 10-14, 2000), 83-94.

[4] Brooks, D., Bose, P., Schuster, S., Jacobson, H., Kudva, P.,
Buyuktosunoglu, A., Wellman, J., Zyuban, V., Gupta, M., and
Cook, P., “Power-Aware Microarchitecture: Design and
Modeling Challenges for Next-Generation Microprocessors,”
IEEE Micro, 20, 6, (Nov./Dec. 2000), 26-44.

[5] Burger, D. and Austin, T. “The SimpleScalar Tool Set,
Version 2.0,” ACM Computer Architecture News, (June
1997), 13-25.

[6] Calder, B., Grunwald, D., and Zorn, B., “Quantifying
Behavioral Differences Between C and C++ Programs,”
Journal of Programming Languages, 2, 4, (1994), 313-351.

[7] Carlton, A., “Lessons Learned from 072.sc”, SPEC
Newsletter, (Mar. 1995).

[8] Choi, Y., Knies, A., Gerke, L., and Ngai, T., “The Impact of
If-Conversion on Branch Prediction and Program Execution
on the Intel Itanium Processor,” In Proceedings of the
International Symposium on Microarchitecture (Micro ’01)
(Austin, TX, December 2-5, 2001), 182-191.

[9] Dujmovic, J. and Dujmovic, I., “Evolution and Evaluation of
SPEC Benchmarks,” ACM SIGMETRICS Performance
Evaluation Review, 26, 3, (Dec. 1998), 2-9.

[10] Eeckhout, L., Vandierendonck, H., and De Bosschere, K. ,
“Workload Design: Selecting Representative Program-Input
Pairs,” In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques (PACT
’02) (Charlottesville, VA, USA, September 22-25, 2002), 83-
94.

[11] Hamerly, G., Perelman, E., and Calder, B., “How to Use
SimPoint to Pick Simulation Points,” ACM SIGMETRICS
Performance Evaluation Review, 31, 4, (Mar. 2004), 25-30.

[12] Hennessy, J. and Patterson, D., “Computer architecture: A
Quantitative Approach,” Morgan-Kauffman, San Francisco,
CA, 2003.

[13] Henning, J., “SPEC CPU2000: Measuring CPU Performance
in the New Millennium,” IEEE Computer, 33, 7, (Jul.. 2000),
28-35.

[14] Henning, J., “SPEC CPU2000 Memory Footprint,”
http://www.spec.org/cpu2000/analysis/memory

[15] Lilja, D., “Measuring Computer Performance,” Cambridge
University Press, New York, NY, 2000.

[16] Phansalkar, A., Joshi, A., Eeckhout, L., and John, L.,
“Measuring Program Similarity: Experiments with SPEC
CPU Benchmark Suites,” Proceedings of the International
Symposium on Performance Analysis of Systems and Software
(ISPASS ’05) (Austin, TX, March 20-22, 2005), 10-20.

[17] Plackett, R. and Burman, J. ”The Design of Optimum
Multifactorial Experiments,” Biometrika, 33, 4, (June 1946),
305-325.

[18] Sherwood, T., Perelman, E., Hamerly, G., and Calder, B.,
“Automatically Characterizing Large Scale Program
Behavior,” In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’02) (San Jose, CA, USA,
October 5-9, 2002), 45-57.

[19] http://www.cs.ucsd.edu/~calder/simpoint

[20] Skadron, K., Martonosi, M., August, D., Hill, M., Lilja, D.,
and Pai, V., “Challenges in Computer Architecture
Evaluation,” IEEE Computer, 36, 8, (Aug. 2003), 30-36.

[21] http://www.spec.org

[22] Vandierendonck, H. and De Bosschere, K., “Eccentric and
Fragile Benchmarks,” In Proceedings of the International
Symposium on Performance Analysis of Systems and Software
(ISPASS ’04) (Austin, TX, March 10-12, 2004), 2-11.

[23] http://www.eecs.umich.edu/~chriswea/benchmarks/SPEC
2000.html

[24] Weicker, R., “An Example of Benchmark Obsolescence:
023.eqntott,” SPEC Newsletter, (Dec. 1995).

[25] Wulf, W. and McKee, S., “Hitting the Memory Wall:
Implications of the Obvious,” ACM Computer Architecture
News, 23, 1, (Mar. 1995), 20-24.

[26] Yi, J., Lilja, D., and Hawkins, D., “A Statistically Rigorous
Approach for Improving Simulation Methodology,” In
Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA ’03) (Anaheim,
CA, USA, February 8-12, 2003), 281-291.

[27] Yi, J., Kodakara, S., Sendag, R., Lilja, D., and Hawkins, D.,
“Characterizing and Comparing Prevailing Simulation
Techniques,” In Proceedings of the International Symposium
on High-Performance Computer Architecture (HPCA ’05)
(San Francisco, CA, USA, February 12-16, 2005), 266-277.

