COMPUTING PRAGTICES

The Future
of Simulation:
A Field of Dreams?

Improving the infrastructure, benchmarking, and
methodology of simulation—the dominant computer
performance evaluation method—uwill result in higher
efficiency and let architects gain more insight into
processor behavior.

Joshua]. Yi

Freescale Semiconductor

Lieven Eeckhout

Ghent University

David J. Lilja
University of Minnesota,
Minneapolis

Brad Calder

University of California,
San Diego

Lizy K. John
University of Texas
at Austin

James E. Smith

University of
Wisconsin-Madison

m Computer

ue to the enormous complexity of computer systems, researchers use

simulators to model system behavior and generate quantitative estimates

of expected performance. Researchers also use simulators to model and

assess the efficacy of future enhancements and novel systems. Arguably

the most important tools available to computer architecture researchers,
simulators offer a balance of cost, timeliness, and flexibility.

For these reasons, architecture researchers have increasingly relied on simu-
lators. Table 1 classifies the performance evaluation methods for papers appear-
ing in the International Symposium on Computer Architecture—the flagship
conference in computer architecture—in six selected years. In the conference’s
inaugural year, only two papers out of 28 (7.1 percent) were simulation-based,
but that number steadily increased to 27.9 percent in 1985, 71.9 percent in
1993, 80 percent in 1997, and finally to 88 percent and 87 percent in 2001 and
2004, respectively.

These results indicate that simulation is a critical component in computer
architecture research. While there is a heavy (and growing) dependence on gen-
eral simulation, architects use a wide variety of methodologies, benchmarks,
and data sets. As a result, several important questions arise regarding the sim-
ulation process.

Do popular simulators adequately model processor or system behavior? What
are the gaps, if any, in simulation technology? What are the essential features of
future simulators? How can we minimize the errors and improve the simulation
speed of future simulators? Are benchmark suites truly representative of typical
applications? How can we design benchmark suites that contain representative
benchmarks, without being overly redundant? How can we properly weight
benchmarks to represent realistic workloads? Are simulation methodologies suf-
ficiently defined to permit independent replication of results? How can we add
scientific rigor to simulation methodologies?

To encourage and foster consideration of these critical questions, a panel dis-
cussion at the International Symposium on Performance Analysis of Systems and
Software in March 2004 focused on simulation infrastructure, benchmarks, and
simulation methodology.

Published by the IEEE Computer Society 0018-9162/06/$20.00 © 2006 |EEE

Most of these issues are geared
toward researchers. However, some
also apply to computer designers
and developers who heavily rely on
simulations to guide the design
process. Moreover, techniques used

Table 1. Performance evaluation methodologies in papers appearing in the Pro-
ceedings of the International Symposium on Computer Architecture.The total is
not necessarily the sum across the columns because some papers used more
than one evaluation method. Adapted from Skadron.!

. L Total Mathematical
m ac.aden.ma might even.t ually perco- Year papers Simulation Measurement modeling Other
late into industry practices.
2004 31 27 3 1 0

SIMULATION 2001 25 22 2 0 2
INFRASTRUCTURE 1997 30 24 6 0 0

Collectively, in addition to striving 1993 32 23 9 6 1
for accuracy by modeling the proces- 1985 43 12 1 14 16
sor in great detail, the developers of 1973 28 2 0 5 21

the current generation of simulators

focus on flexibility. However, com-

puter architects must explore relatively large design and
application spaces, and detailed modeling and flexibil-
ity together pose problems that limit this exploration.
The computer architecture community must devise solu-
tions to ensure that these conflicting issues do not inhibit
future computer architecture research and design.

Availability and diversity

Implementing and validating a simulator that faith-
fully models a state-of-the-art processor’s behavior is
extremely time-consuming and arduous. As a result, few
researchers invest the effort to construct simulators suit-
able for open source distribution; SimpleScalar (www.
simplescalar.com)—the simulator most researchers cur-
rently use—is a notable exception. The slow and infre-
quent development of open source simulators often
results in using simulators that model unrealistic, dated,
or even obsolete computer architectures.

There is currently a limited simulation infrastructure
for multiprocessor and multithreaded simulation.
However, with the recent advent of chip multiproces-
sors, interest in multiprocessor simulation infrastruc-
ture has grown significantly.

While researchers are currently working on open source
simulators, the computer architecture community must
expend additional effort to provide a wider variety of
open source simulators for uniprocessor, multiprocessor,
and multithreaded systems. This will lower the barrier of
entry for other researchers to make contributions, while
stimulating the independent validation of proposed ideas,
which will likely improve the overall quality of research
for these topics. The use of modular simulation infra-
structures such as Liberty,> which allows for the quick
building of simulators by assembling several reusable
components, might be an interesting avenue to explore.

Speed and levels of abstraction

A primary characteristic of many modern simulators
is their cycle accuracy, or the high level of detail to which
they model the processor. Although this level of detail

is critical for the simulator’s fidelity and accuracy, the
associated tradeoff is decreased simulation speed. The
slower simulation speed is especially limiting when
exploring an enormous design space that is the product
of large numbers of processor configurations, compiler
optimizations, benchmarks, and data sets. While this is
a severe problem for computer designers during design
space exploration, researchers also face the limitation
of slow simulation speeds. Given the preponderance of
papers that rely entirely on cycle-accurate simulators, it
appears that architects are not using the full range of
simulation options—such as analytical modeling and
statistical simulation—to efficiently traverse and char-
acterize the design space. Consequently, these detailed
simulation-based studies often incompletely character-
ize the design space, which subsequently detracts from
the study’s overall contribution.

To address the problem of efficiently traversing the
design space, we recommend using and improving on a
range of alternatives, especially during the early phases
of the design cycle. These alternatives include

e analytical models,>*
e statistical simulation,>® and
e specialized trace-driven simulation.

Analytical modeling involves developing a limited
number of formulas that summarize performance based
on program characteristics and microarchitectural para-
meters. Statistical simulation combines analytical mod-
eling and simulation to generate a synthetic trace based
on several program characteristics and is subsequently
simulated on a simple trace-driven simulator. The
“Statistical Simulation” sidebar provides a detailed
explanation of this process.

Trace-driven simulation is an old technique in which
functional simulation is separated from detailed simu-
lation. Trace-driven simulation yields a slight speed
advantage over execution-driven simulation since trace-
driven simulation does not functionally execute the pro-

November 2006 |EXJ

|
Statistical Simulation

Lieven Eeckhout, Ghent University
Lizy K. John, University of Texas at Austin
James E. Smith, University of Wisconsin-Madison

Statistical simulation'* reduces the runtime for a detailed
microarchitecture simulation.The basic idea of statistical
simulation is to

* measure key program characteristics, that is, collect a
statistical profile of the program execution;

» generate a synthetic trace having the same characteris-
tics;and

* simulate the synthetic trace.

The synthetic trace is statistically similar to the average
overall program behavior, making it several orders of magni-
tude shorter than the original program execution while
providing reasonable accuracy. Further, the simulation model
is much simpler than the detailed model because instruc-
tions collapse into a small number of types; cache and branch
predictor behavior is also modeled statistically.

Given that a statistical profile reflects the key properties
of the program’s execution behavior, statistical simulation
can accurately estimate performance and power. In recent
years, statistical simulation research has evolved to improve
its accuracy by including additional levels of correlation
among program characteristics. The most accurate statistical
simulation frameworks known to date include statistical flow
graphs to model paths of execution,* as well as accurate
memory data flow models for delayed hits and cache miss

gram, while execution-driven simulation combines both
functional and detailed simulation in a single run.

Allowing the simulation of any program given the cor-
rect tracing infrastructure is trace-driven simulation’s
main advantage. Pure execution-driven simulation
requires the emulation of system calls in the simulator,
which is tedious to implement and costly to maintain;
and simulators often support only a small set of system
calls, which limits the type of programs that can be
simulated.

In comparison, tracing the minimal amount of infor-
mation needed to replay a program’s execution allows
the simulation of any application without having to
emulate the operating system effects;” and the amount of
storage required for these traces is reasonable. Allowing
the generation of trace samples to be distributed and let-
ting others reproduce the same program execution for
simulation are another two advantages of trace-driven
simulation.

On the other hand, trace-driven simulation’s main
drawback is that it might not capture the mispredicted

m Computer

correlation.’ The goal of statistical simulation is not to
replace detailed simulation but to serve as a useful comple-
ment to speed up the early stages of the design process.

A faster simulation methodology allows more efficient
exploration of a large design space.

Statistical profiling

Specialized functional or trace-driven simulation provides
both microarchitecture-independent and microarchitecture-
dependent characteristics for the statistical profile.

Microarchitecture-independent characteristics include the
statistical flow graph, the instruction types,and the inter-
instruction dependencies (through registers as well as mem-
ory). Microarchitecture-dependent characteristics include
locality metrics such as branch predictability and cache behav-
ior. Since locality metrics are difficult to model in a microarchi-
tecture-independent way, the pragmatic approach is to
simultaneously compute them for a wide range of branch
predictors and cache configurations in a single profiling run.

Synthetic trace generation

After generating the statistical profile, the trace generator
produces the synthetic trace. Synthetic trace generation
uses random numbers between zero and one to select a
program characteristic from its cumulative distribution
function. A synthetically generated instruction consists of its
type (arithmetic logic unit, load, store, or branch), its depen-
dencies, and whether it causes an |-cache miss. In the case of
load or branch instructions, the instruction indicates
whether it causes a d-cache miss or is a mispredicted

path of execution, if those instructions or data values
are not present in the trace. However, excluding the exe-
cution of mispredicted instructions does not typically
have a significant effect on simulation accuracy.
Although trace-driven simulation currently seems to be
less popular than execution-driven simulation, we rec-
ommended reevaluating the tradeoffs between the two.
Compared with cycle-accurate simulation, analytical
modeling and statistical simulation are typically much
faster, but less accurate. Although these two alternatives
might be less accurate than cycle-accurate simulation, their
higher simulation speed earlier in the design process’s eval-
uation cycle is more important for at least two reasons.
First, although the absolute accuracy of these alter-
natives might not be as high as the absolute accuracy of
cycle-accurate simulation, their relative accuracy is usu-
ally sufficient to track significant changes in the proces-
sor’s performance. In other words, since these alterna-
tives can detect significant trends in the performance,
their level of accuracy is sufficient for the design space
exploration that occurs early in the design cycle.

branch, respectively. The synthetic trace typically contains
100,000 to 1,000,000 instructions.

Statistical processor modeling

The final step is simulating the synthetically generated
trace using a simplified processor model. This simulator
models instruction types and dependencies in the same way
that detailed simulators do; but modeling cache misses and
branch mispredictions is quite different.

The simulator models miss events statistically according
to their miss rates. In case of an l-cache miss, the simulator
stops fetching instructions for a number of cycles equal to
the miss delay. In case of a D-cache load miss, the simulator
assigns the access latency of the next level in the memory
hierarchy; the remaining miss latency is assigned in a delayed
hit. In case of branch misprediction, the simulator flushes the
pipeline when the mispredicted branch gets executed.

Because the synthetic trace simulator does not need to
explicitly model caches or branch predictors, the simulation
model is both simpler to write and runs faster than a con-
ventional detailed simulator. Coupled with the very short
traces, the simulation times for this simulator are several
orders of magnitude lower than their detailed counterparts.

Applications

Statistical simulation has several applications.The most
obvious is uniprocessor power and performance design.
Experiments?#67 show that statistical simulation achieves
excellent relative accuracy, making it extremely useful for
early design stage exploration. Workload characterization

Another key advantage of analytical modeling and
statistical simulators is that their implementation
requires a fraction of the time of the typical cycle-accu-
rate simulator, which increases their utility early in the
design cycle. When the goal of simulation is to gain
insight into the processor’s behavior or to explore the
design space, adding fine-grained detail into the simu-
lator’s processor model might not be worth the addi-
tional modeling time. In addition to dramatically
decreasing the simulation speed, using a simulator that
is too detailed might cause the researcher or designer to
get bogged down in the details and miss the big picture.

In fact, one of the overriding conclusions of the 2004
panel discussion was that simulations tend to cause the
computer architect to focus more on the quantitative
measurement itself than on the insight that the mea-
surement yields.

Reduced simulation time techniques
Because the simulator’s speed can limit the amount of
design space exploration, researchers and designers use

and program analysis is a second application because the key
features modeled in a statistical simulation framework are
the ones more relevant to determining overall performance.
Third, statistical simulation will be even more efficient for
large system-level explorations and design studies than
detailed cycle-by-cycle simulations.

References

I. M.Oskin,F.Chong,and M. Farrens,“HLS: Combining Statistical and
Symbolic Simulation to Guide Microprocessor Design,” Proc. 27th
Ann. Int’l Symp. Computer Architecture, ACM Press, 2000, pp. 71 -82.

2. S.Nussbaum and J. Smith, “Modeling Superscalar Processors via
Statistical Simulation,” Proc. 10th Ann. Int’l Conf. Parallel Architec-
tures and Compilation Techniques, IEEE CS Press, 2001, pp. 15-24.

3. L.Eeckhout etal.,Statistical Simulation: Adding Efficiency to the Com-
puter Designer’s Toolbox,” IEEE Micro, Sept./Oct.2003, pp. 26-38.

4. L. Eeckhout et al.,“Control Flow Modeling in Statistical Simula-
tion for Accurate and Efficient Processor Design Studies,” Proc.
3 IstAnn. Int’l Symp. Computer Architecture, IEEE CS Press, 2004, pp.
350-361.

5. D.Genbrugge,L.Eeckhout,and K. De Bosschere,“Accurate Mem-
ory Data Flow Modeling in Statistical Simulation,” Proc. 20th Ann.
Int’l Conf. Supercomputing, IEEE CS Press, 2006.

6. S. Eyerman, L. Eeckhout, and K. De Bosschere, “Efficient Design
Space Exploration of High Performance Embedded Out-of-Order
Processors,” Proc. Conf. Design Automation andTest in Europe, Euro-
pean Design and Automation Association, 2006, pp. 351-356.

7. A.Joshi et al.,“Evaluating the Efficacy of Statistical Simulation for
Design Space Exploration,” Proc. IEEE Symp. Performance Analysis of
Systems and Software, |[EEE Press, 2006, pp. 70-79.

reduced simulation time techniques such as truncated
execution, reduced input sets, and sampling.

In the sampling category, researchers have recently
introduced sophisticated statistically-based simulation
techniques such as SimPoint® and sampling microarchi-
tecture simulation (SMARTS),? which can drastically
reduce the simulation time with little loss in simulation
accuracy. The “Statistical and Representative Sampling”
sidebar (on the next page) provides further information
on sampling-based simulation techniques. To further
reduce the simulation time of a single test case, in con-
junction with the aforementioned techniques, researchers
can distribute the simulation of samples across a cluster
of machines for simulation in parallel.'?

Researchers must address two issues to produce accu-
rate and fast results from sampling techniques. First,
they must load the architectural state efficiently, which
they can achieve through reduced checkpointing.'!
Second, they should construct the hardware state, such
as cache and branch predictor, as accurately as possible.
They can achieve this by using warm-up techniques such

November 2006 [T

Statistical and Representative Sampling
Brad Calder

University of California, San Diego

Sampling is an established method for representing a data
set using a fraction of the data. A sample is a contiguous
interval of dynamic instructions during program execution.

Sampling techniques are split into two general types—
statistical sampling and representative sampling. Statistical
sampling samples the execution in a random or systematic
pattern without special consideration of the sample selec-
tion. Representative sampling involves carefully choosing
samples to uniquely represent repetitive patterns in a pro-
gram’s execution.

Statistical sampling

Computer architecture researchers have proposed sev-
eral different sampling techniques to estimate a program’s
behavior. Statistical sampling has a rigorous mathematical
foundation based on the central limit theorem.

Subhasis Laha and colleagues' introduced the use of ran-
dom sampling to evaluate cache memory performance.They
compared the sampled mean’s accuracy and examined the
distribution of random sampling to show that it matched
that of the real trace.

Thomas Conte? pioneered the use of statistical sampling
in processor simulation. He applied sampling methods to
cache and instruction traces with good accuracy. In more
recent work, Conte and colleagues?® provided a framework
that took random samples from the execution. They com-

as memory reference reuse latency'? or by constructing
a particular hardware state from a generic stored hard-
ware state. As an example, constructing cache state from
the state of a larger cache is both easy to do and accu-
rate." These recent contributions make producing both
accurate and fast results from these sampling techniques
possible.'3

Uniprocessor simulation has been the target for most
of this sampled simulation research, yet little research
has been directed toward multiprocessor and multi-
threaded system simulation. Researchers must investi-
gate sampling techniques because extending the
uniprocessor’s efficient architecture and hardware state
construction techniques to multiprocessor and multi-
threaded system simulation is especially challenging.

BENCHMARKING

Ideally, a benchmark suite collectively represents the
commonly used programs in a particular application
space, such as general-purpose, online-transaction-pro-
cessing, scientific, multimedia, and embedded applica-
tions. However, as is the case for simulators, potential

m Computer

puted the samples’ statistical metrics such as standard devi-
ation, probabilistic error,and confidence bounds to predict
the estimated results’ accuracy, and statistically analyzed the
metric of interest such as instructions per cycle.

Conte and colleagues specified two sources of error in
their sampling technique—nonsampling bias and sampling
bias. Nonsampling bias results from improperly warming up
the processor. Sampling bias, on the other hand, is fundamen-
tal to the samples, since it quantifies how accurately the
sample average represents the overall average.Two major
parameters influence this error—the number of samples and
the size of each sample in instructions.

The sample size in processor simulation is the number of
dynamic instructions that a sample encompasses.The smaller
the sample size, the faster the potential simulation time, but
this comes at the cost of increased overhead and complexity
because of the need for accurate sample warm-up.*

To determine the amount of samples to take, the user
determines a particular accuracy level for estimating the
metric of interest. The benchmark is then simulated and N
samples are collected, N being an initial value for the num-
ber of samples. Error and confidence bounds are com-
puted for the samples, and, if they satisfy the accuracy
limit, this estimate is good. Otherwise, more samples (> N)
must be collected, and the error and confidence bounds
must be recomputed for each collected sample set until
the accuracy threshold is satisfied. The SMARTS® frame-
work proposes an automated approach for applying this
sampling technique.

problems might either limit the utility of those bench-
marks or, worse yet, result in misleading conclusions.

Representativeness and subsetting suites

The more serious of the two benchmarking problems
is the uncertainty in the representativeness of typical
benchmark suites. More specifically, while certain
benchmark suites are not necessarily more representative
than others, the representativeness of most benchmark
suites is unknown. For example, the question is not
whether the benchmarks in the Standard Performance
Evaluation Corporation (SPEC) CPU 2006 benchmark
suite—the current de facto standard for general-purpose
computing—are evenly distributed over the entire appli-
cation space or have similar characteristics. Rather, it is
that the representativeness of the SPEC CPU 2006
benchmark suite is unknown.

A related problem is the subsetting of benchmark
suites for simulation. The key questions are not whether
researchers are subsetting benchmark suites or whether
they should be subsetted, but rather are they subsetting
benchmarks in a justifiable way, is the resulting subset

Representative sampling

Representative sampling contrasts with statistical sampling
in that it first analyzes the program’s execution to pick a
representative sample for each unique behavior in the pro-
gram’s execution.The key advantage of this approach is that
having fewer samples can reduce simulation time and also
allows for a simpler simulation infrastructure.

SimPoint® is an infrastructure that chooses a small number
of representative samples that, when simulated, represent
the program’s complete execution. SimPoint relies on the
fact that a program’s execution is a series of repeating pat-
terns (loops and procedure calls), which are recurring
behaviors called phases.This structured behavior greatly
benefits simulation, since only a single sample needs to be
simulated from each repetitive pattern or phase.

To accomplish this, SimPoint breaks a program’s execution
into fixed-length intervals of execution, for example, 10
million instructions. An instruction interval is defined to
represent a contiguous stream of instructions during pro-
gram execution. A vector, in which every dimension repre-
sents a static code construct, such as branch edges, basic
blocks, loops, or procedures, represents each interval. The
dimension is incremented when each code construct is
executed during that interval’s execution. Therefore, the
vector represents the proportion of code executed during
that interval and forms a code signature for it.

SimPoint then compares two vectors by computing their
distance from each other. Vectors close to each other are
grouped into the same phase, or cluster; using the k-means

of benchmarks representative of the entire suite, and
should some benchmarks in the subset (or in the suite for
that matter) be weighted more than others?

Also, of the classification techniques used to cluster
benchmarks before subsetting, do some techniques yield
more meaningful classifications than others? If the sub-
set of benchmarks that the computer architect selects is
not representative of the entire suite, when it should be,
such as for general-purpose computing, the conclusions
the architect draws might be completely different from
the conclusions that would have been drawn had the
entire suite been used.

Ideally, a benchmark suite should cover the desired
application space with as few benchmarks as possible.
Implicit in this stipulation is that redundancy—in terms
of multiple benchmarks covering the same subspace—
should be minimized. To help accomplish this, the com-
puter architecture community must propose additional
methods of characterizing and classifying benchmarks.
Currently that includes, but is not limited to, charac-
terizing benchmarks based on their performance bot-
tlenecks!* or their principal components, that is, their

algorithm from machine learning. Only one interval is cho-
sen from a cluster for detailed simulation because intervals
with similar code signatures have similar architectural
metrics. Simulating each of the representative samples
together—one from each cluster—creates a complete
and accurate representation of the program’s execution

in minutes.*

References

I. S.Laha,].Patel,and R. lyer,“Accurate Low-Cost Methods for Per-
formance Evaluation of Cache Memory Systems,” IEEE Trans. Com-
puters, Nov. 1988, pp. 1325-1336.

2. T.Conte,"Systematic Computer Architecture Prototyping,” doc-
toral dissertation, Dept. Electrical and Computer Eng., Univ. of llli-
nois at Urbana-Champaign, 1992.

3. T.Conte, M.Hirsch,and W.Hwu,“Combining Trace Sampling with
Single Pass Methods for Efficient Cache Simulation,” IEEE Trans.
Computers, June 1998, pp.714-720.

4. M.Van Biesbrouck, L. Eeckhout, and B. Calder, “Efficient Sampling
Startup for Sampled Processor Simulation,” Proc. Int’l Conf. High
Performance Embedded Architectures and Compilers, Springer, 2005,
pp.47-67.

5. R.Wunderlich et al.,“SMARTS: Accelerating Microarchitectural
Simulation via Rigorous Statistical Sampling,” Proc. 30th Ann. Int’l
Symp. Computer Architecture, ACM Press, 2003, pp. 84-95.

6. T.Sherwood et al.,“Automatically Characterizing Large Scale Pro-
gram Behavior,” Proc. | 0th Int’l Conf. Architectural Support for Pro-
gramming Languages and Operating Systems,ACM Press, 2002, pp.
45-57.

architectural characteristics such as cache miss rate,
branch prediction accuracy, amount of instruction-level
parallelism, and so forth."> Other options include clas-
sifying benchmarks based on their characteristics such
as computation or memory-boundedness and integer
and floating point.

To address these two problems, computer architec-
ture researchers must continue to develop characteriza-
tion and classification methods that are more accurate
or efficient than current methods, providing important
building blocks for developing benchmark suites that
efficiently span an application space.

Simulation time

The second problem we identified was the bench-
marks’ length, which translates into simulation time.
For some benchmarks, such as those from SPEC CPU
2006, the intended purpose was to use the entire suite to
measure the performance of real processors. For many
reasons, including portability and standardization,
architecture researchers have adopted these benchmarks
for simulation.

November 2006

However, due to the tremendous speed difference
between native execution and simulation, simulating a
complete benchmark takes several orders of magnitude
longer than hardware execution, which makes simulating
the entire benchmark suite impossible for most studies.
On the other hand, some benchmarks might be too abbre-
viated if they exclude the initialization and clean-up sec-
tions of the code, and it is important
to have representative samples from
all phases of a program’s execution.

To reduce the simulation time of
industry-standard benchmarks to a
tractable level, we again recommend
using sampling-based techniques
such as SimPoint and SMARTS.

SIMULATION METHODOLOGY

Broadly, simulation methodology
is defined as the specific steps of set-
ting up and running simulations, and then analyzing
the results. Using poor simulation methodology might
affect simulation results or limit the insight gained from
simulations.

Ad hoc simulation

The first problem with current simulation methodology
is often ad hoc simulation. For example, when evaluating
the efficacy of a processor enhancement, the architecture
researcher must choose processor and memory parame-
ters to configure the simulator, select a subset of bench-
marks, use a reduced-time simulation technique to
minimize the overall simulation time, and analyze the rea-
sons for any observed improvements. At best, however,
researchers typically neglect to describe the justification
for these decisions or state their underlying assumptions;
at worst, they choose parameters and a subset of bench-
marks haphazardly or do not characterize their results in
a systematic or statistically rigorous manner.

In addition to having the potential of significantly
skewing the simulation results—for example, by choos-
ing a poor set of parameters—ad hoc simulation
methodology might also obscure important conclusions.
In a similar vein, inadequately documenting or justify-
ing the simulation methodology makes independent
replication of simulation results—and improvements to
the original work—difficult, if not impossible.

To address the problem of ad hoc simulation method-
ology, computer architecture researchers must add more
scientific rigor to their studies. In particular, the two spe-
cific recommendations are to comprehensively docu-
ment and justify the simulation methodology and to
make it more statistically rigorous. Carefully docu-
menting the simulation methodology ensures repro-
ducibility of results, and providing justification for the
choices offers additional insight into the researcher’s
thought processes.

m Computer

Reproducibility and
comparability are
key problems

with current
simulation
methodology.

Further, by incorporating statistical rigor into simu-
lation methodology, the researcher can run simulations
efficiently, reduce the errors in the simulation method-
ology, and gain insight into the behavior of the proces-
sor enhancement being evaluated. Researchers are
developing more statistically rigorous approaches to
choosing processor and memory parameters, efficiently
reducing the design space, charac-
terizing and classifying benchmarks,
and analyzing the effects of enhance-
ments.!'®13

Simulation workloads

Researchers often use a wide range
of processor and memory subsystem
configurations for their simulations.
Consequently, the large number of
benchmarks, data sets, simulation
techniques such as truncated execu-
tion and reduced input sets, and benchmark suite sub-
setting techniques lead to wide variation in the workloads
that architecture researchers use for their simulations.
Regardless of whether the processor and memory con-
figurations are “realistic” or if the researcher selects the
most “appropriate” workload, directly comparing the
results from two different simulation studies is difficult
when using a wide range of configurations and work-
loads. Therefore, reproducibility and comparability are
key problems with current simulation methodology.

To address these issues, the research community must
try to achieve consensus on well-balanced processor and
memory hierarchy configurations, common subsets of
benchmarks, and common data sets. In addition, mak-
ing available checkpoints and traces of benchmark exe-
cution ensures that the same application-level behavior
occurs during simulation for reproducible results.”
However, it is important to include future applications
in the subset of benchmarks to ensure that future appli-
cation characteristics are well represented.

urrently, simulation is the approach of choice for

quantitatively evaluating computer architecture

performance. However, problems with the current
simulation infrastructure, benchmarking, and simulation
methodology can affect simulation accuracy or the time
required for simulation, which might potentially affect
the conclusions drawn.

We make five key recommendations. First, the state of
simulation technology must improve further to allow for
efficient multiprocessor and multithreaded simulation and
the simulation of popular operating systems and applica-
tions. Second, researchers must propose more efficient
simulation methods and continue to extend sampling-
based simulation techniques for multiprocessor and mul-
tithreaded simulations. Third, architects should use

higher-speed alternatives to cycle-accurate simulation to
efficiently traverse large design spaces. Fourth, benchmark
suites should contain representative and nonredundant
benchmarks that are efficient and fast to simulate. Fifth,
simulation methodology must be more robust and statis-
tically based to increase the likelihood of independent val-
idation and to facilitate comparability.

The underlying motivation for these recommendations
is to gain insight into the behavior of processors in the
environments where they will actually be used.
Researchers must encourage the use of analytical model-
ing and statistical theory in performance evaluation, and
training for these tools and evaluation techniques should
be included in computer architecture education. To
extend the historical rate of performance improvement
in architectural enhancements, the computer architecture
community must implement these recommendations and
address other simulation-related questions.

References

1. K. Skadron et al., “Challenges in Computer Architecture Eval-
uation,” Computer, Aug. 2003, pp. 30-36.

2. M. Vachharajani et al., “Microarchitectural Exploration with
Liberty,” Proc. 35th Ann. Int’l Symp. Microarchitecture, IEEE
CS Press, 2002, pp. 271-282.

3. T. Karkhanis and J. Smith, “Modeling Superscalar Proces-
sors,” Proc. 31st Ann. Int’l Symp. Computer Architecture,
IEEE CS Press, 2004, pp. 338-349.

4. T. Sherwood, M. Oskin, and B. Calder, “Balancing Design
Options with Sherpa,” Proc. Int’l Conf. Compilers, Architec-
ture, and Synthesis for Embedded Systems, ACM Press, 2004,
pp- 57-68.

5. S. Nussbaum and J. Smith, “Modeling Superscalar Processors
via Statistical Simulation,” Proc. 11th Ann. Int’l Conf. Parallel
Architectures and Compilation Techniques, IEEE CS Press,
2001, pp. 15-24.

6. L. Eeckhout et al., “Control Flow Modeling in Statistical Sim-
ulation for Accurate and Efficient Processor Design Studies,”
Proc. 31st Ann. Int’l Symp. Computer Architecture, IEEE CS
Press, 2004, pp. 351-362.

7. S. Narayanasamy et al., “Automatic Logging of Operating
System Effects to Guide Application-Level Architecture Sim-
ulation,” Proc. Joint Int’l Conf. Measurement and Modeling
of Computer Systems, ACM Press, 2006, pp. 216-227.

8. T. Sherwood et al., “ Automatically Characterizing Large Scale
Program Behavior,” Proc. 10th Int’l Conf. Architectural Sup-
port for Programming Languages and Operating Systems,
ACM Press, 2002, pp. 45-57.

9. R. Wunderlich et al., “SMARTS: Accelerating Microarchi-
tectural Simulation via Rigorous Statistical Sampling,” Proc.
30th Ann. Int’l Symp. Computer Architecture, ACM Press,
2003, pp. 84-95.

10. S. Girbal et al., “DiST: A Simple, Reliable and Scalable
Method to Significantly Reduce Processor Architecture Sim-
ulation Time,” Proc. 2003 ACM Sigmetrics Int’l Conf. Mea-

surement and Modeling of Computer Systems, ACM Press,
2003, pp. 1-12.

11. M. Van Biesbrouck, L. Eeckhout, and B. Calder, “Efficient
Sampling Startup for Sampled Processor Simulation,” Proc.
2005 Int’l Conf. High Performance Embedded Architectures
and Compilers, Springer, 2005, pp. 47-67.

12. J. Haskins Jr. and K. Skadron, “Memory Reference Reuse
Latency: Accelerated Warmup for Sampled Microarchitecture
Simulation,” Proc. 2003 Int’l Symp. Performance Analysis of
Systems and Software, IEEE Press, 2003, pp. 195-203.

13. J.Yietal., “Characterizing and Comparing Prevailing Simulation
Methodologies,” Proc. 11th Ann. Int’l Symp. High-Performance
Computer Architecture, IEEE CS Press, 2005, pp. 266-277.

14.]. Yi, D. Lilja, and D. Hawkins, “A Statistically Rigorous
Approach for Improving Simulation Methodology,” Proc. 9th
Ann. Int’l Symp. High-Performance Computer Architecture,
IEEE CS Press, 2003, pp. 281-291.

15. L. Eeckhout, H. Vandierendonck, and K. De Bosschere,
“Workload Design: Selecting Representative Program-Input
Pairs,” Proc. 11th Ann. Int’l Conf. Parallel Architectures and
Compilation Techniques, IEEE CS Press, 2002, pp. 83-94.

Joshua]. Yi is a performance analyst at Freescale Semicon-
ductor. Yireceived a PhD in electrical engineering from the
University of Minnesota, Minneapolis. Contact him at jjyi@
ece.umn.edu.

Lieven Eeckhout is an assistant professor in the Electronics
and Information Systems Department at Ghent University,
Belgium, and is supported by a postdoctoral fellowship of
the Fund for Scientific Research-Flanders. Eeckbout received
a PhD in computer science and engineering from Ghent Uni-
versity. Contact bim at lieven.eeckhout@elis.ugent.be.

David]. Lilja is a professor of the Department of Electri-
cal and Computer Engineering at the University of Min-
nesota, Minneapolis. Lilja received a PhD in electrical
engineering from the University of lllinois at Urbana-Cham-
paign. Contact him at liljia@ece.umn.edu.

Brad Calder is a professor in the Department of Computer
Science and Engineering at the University of California, San
Diego. Calder received a PhD in computer science from the
University of Colorado, Boulder. Contact him at calder@cs.
ucsd.edu.

Lizy K. John is an associate professor in the Department of
Electrical and Computer Engineering at the University of
Texas at Austin. John received a PhD in computer engi-
neering from the Pennsylvania State University. Contact her
at liohn@ece.utexas.edu.

James E. Smith is a professor in the Department of Electri-
cal and Computer Engineering at the University of Wis-
consin-Madison. Smith received a PhD in computer science
from the University of lllinois.

November 2006 |EZJ

