
...

SINGLE-THREADED VS.
MULTITHREADED: WHERE SHOULD

WE FOCUS?
...

TO CONTINUE TO OFFER IMPROVEMENTS IN APPLICATION PERFORMANCE, SHOULD

COMPUTER ARCHITECTURE RESEARCHERS AND CHIP MANUFACTURERS FOCUS ON

IMPROVING SINGLE-THREADED OR MULTITHREADED PERFORMANCE? THIS PANEL, FROM

THE 2007 WORKSHOP ON COMPUTER ARCHITECTURE RESEARCH DIRECTIONS,

DISCUSSES THE RELEVANT ISSUES.

Moderator’s introduction: Joel Emer......Today, with the increasing popu-
larity of multicore processors, one approach
to optimizing the processor’s performance is
to reduce the execution times of individual
applications running on each core by
designing and implementing more powerful
cores. Another approach, which is the polar
opposite of the first, optimizes the proces-
sor’s performance by running a larger
number of applications (or threads of
a single application) on a correspondingly
larger number of cores, albeit simpler ones.
The difference between these two approaches
is that the former focuses on reducing the
latency of individual applications or threads
(it optimizes the processor’s single-threaded
performance), whereas the latter focuses on
reducing the latency of the applications’
threads taken as a group (it optimizes the
processor’s multithreaded performance).

The obvious advantage of the single-
threaded approach is that it minimizes the
execution times of individual applications
(especially preexisting or legacy applica-
tions)—but potentially at the cost of longer

design and verification times and lower
power efficiency. By contrast, although the
multithreaded approach may be easier to
design and have higher power efficiency, its
utility is limited to specific—highly paral-
lel—applications; it is difficult to program
for other, less-parallel applications.

Of course the multiprocessor versus uni-
processor controversy is not a new issue. My
earliest recollection of it is from back in the
1970s, when Intel introduced the 4004, the
first microprocessor. I remember almost
immediately seeing proposals that said that
if we could just hook together a hundred or
a thousand of these, we would have the best
computer in the world, and it would solve all
of our problems. I suspect that no one
remembers the result of that research, as the
long series of increasingly more powerful
microprocessors is a testament to our success
at (and the value of) improving uniprocessor
performance. Yet, with each successive gen-
eration—the 4040, the 8080, all the way up
to the present—we’ve seen exactly the same
sort of proposal for ganging together lots of
the latest-generation uniprocessors.

Joel Emer

Intel

Mark D. Hill

University of Wisconsin

–Madison

Yale N. Patt

University of Texas at

Austin

Joshua J. Yi

Freescale Semiconductor

Derek Chiou

University of Texas at

Austin

Resit Sendag

University of Rhode

Island

...

14 Published by the IEEE Computer Society 0272-1732/07/$20.00 G 2007 IEEE

So the question for these panelists is, why
is today’s generation different from any of
the past generations? Clearly, it is not just
that we cannot achieve gains in instructions
per cycle (IPC) in direct proportion to the
number of transistors used, because that’s
never been true. If it had been true, we
would have IPCs several orders of magni-
tude larger than those we have today. Our
recent rule of thumb has been that processor
performance improves as the square root of
the number of transistors, and cache-miss
rates likewise improve as the square root of
the cache size. Yet, despite these sublinear
architectural improvements, until recently,
uniprocessors have been the preferred
trajectory. Why is the uniprocessor trajec-
tory insufficient for today? Are there no
ideas that will bring even that sublinear
architectural performance gain? Why aren’t
the order-of-magnitude gains being prom-
ised by single-instruction, multiple-data
(SIMD), vector, and streaming processors
of interest? Is the complexity of current
architectures a factor in the inability to push
across the next architectural performance
step? Or is there a feeling that, irrespective
of architecture, we’ve crossed a complexity
threshold beyond which we can’t build
better processors in a timely fashion?

Looking at multiprocessors, is using full
(but simpler) processors as the building
blocks the right granularity? Are multi-
processors really such a panacea of simplic-
ity? How much complexity is going to be
introduced in the interprocessor intercon-
nect, in the shared cache hierarchy, and in
processor support for mechanisms like
transactional memory? Much of the chal-
lenge of past generations has been coping
with the increasing disparity between pro-
cessor speed and memory speed, or the
limits of die-to-memory bandwidth. Does
having a multiprocessor with its multiple
contexts make this problem worse instead of
better? And, even if multiprocessors really
are a simpler alternative, what is the
application domain over which they will
provide a benefit? Will enough people be
able to program them?

As I hope is clear, both approaches have
advantages and disadvantages. It is, howev-
er, unclear which approach will be more

heavily used in the future, and should be the
major focus of our research. The goal of this
panel was to discuss the merits of each
approach and the trade-offs between the
two.

The case for single-threaded optimization:
Yale N. Patt

The purpose of a chip is to optimally
execute the user’s desired single application.
In other words, the reason for designing an
expensive chip, rather than a network of
simple chips, is to speed up the execution of
individual programs. To the user, optimally
executing a desired application means
minimizing its execution time. Amdahl’s
law says the maximum speedup in the
execution time is limited by the time it takes
to execute the slowest component of the
program. Therefore, when we parallelize an
application to run multiple threads across
multiple cores, the maximum speedup is
limited by the time that it takes to execute
the serial part of the program, or the one
that needs to run on a powerful single core.

For example, suppose a computer archi-
tect designs a processor for a specific
operating system that needs to periodically
execute an old VAX instruction. In the
extreme, assume that this instruction shows
up only once every two weeks. In that case,
because that instruction is not frequently
executed, the computer architect does not
allocate much hardware to execute that
instruction. In the worst case, if it takes the
processor three weeks to execute the in-
struction, then the program will never finish
executing, because the processor did not run
the slowest part of the program fast enough.
Although this example is clearly exaggerat-
ed, it motivates the need to continue to
focus on improving the single-threaded
performance of processors.

One potential objection to continuing to
focus heavily on single-threaded microarch-
itectural research is that there is insufficient

...

About this article

Derek Chiou, Resit Sendag, and Josh Yi conceived and organized the 2007 CARD

Workshop and transcribed, organized, and edited this article based on the panel discussion.

Video and audio of this and the other panels can be found at http://www.ele.uri.edu/CARD/.

..

NOVEMBER–DECEMBER 2007 15

parallelism at the instruction level to
significantly improve processor perfor-
mance, whereas there may be significantly
more parallelism at the thread level that can
be exploited instead. However, difficult
problems still need to be solved, and the
computer architecture community will not
solve them if the best and brightest are
steered away from those problems. Creativ-
ity and ingenuity can solve those problems.
For example, in the RISC vs. CISC debate,
CISC did not win merely because of legacy
code. Rather, CISC won the debate because
computer architects had the ingenuity to
develop solutions such as out-of-order
execution combined with in-order retire-
ment, wide issue, better branch prediction,
and so on. For example, Figure 1 shows the
headroom remaining for a 16-wide issue
processor that uses the best branch predictor
and prefetcher available at the time the
measurements were made.1

Take, for example, the creativity of
computer architects with respect to branch
prediction. Conventional wisdom in 1990
pretty well accepted as fact that instruction-
level parallelism on integer codes would
never be greater than 1.85 IPC. However,
even simple two-level branch predictors
could improve the processor’s performance
beyond 1.85 IPC. And, today, computer
architects such as Andre Seznec and Daniel
Jimenez have proposed more sophisticated
branch predictors that are better than the

two-level branch predictor. There is still
quite a bit more unrealized performance to
be gotten from better branch prediction and
better memory hierarchies (see Figure 1.)
The key point is that the computer
architecture community should not avoid
the difficult problems, but rather should
harness its members’ creativity and ingenu-
ity to propose solutions and solve those
problems.

Another potential objection to the single-
threaded focus is power consumption.
Power consumption in a 10-billion-transis-
tor processor is a significant problem.
However, in a processor with 10 billon
transistors, the processor could have several
large functional units that remain powered
off when not in use, but that are powered
up via compiled code when necessary to
carry out a needed piece of work specified
by the algorithm. I use my ‘‘Refrigerator’’
analogy to explain this type of microarch-
itecture. William ‘‘Refrigerator’’ Perry was
a huge defensive tackle for the 1985
Chicago Bears. While the Bears were on
offense, Perry sat on the bench until they
were on the one yard line. Then, they would
power him up to carry the ball for
a touchdown. To me, the key question is,
‘‘How much functionality can we put into
a processor that remains powered off until it
is needed?’’

I think the processor of the future will be
what I call Niagara X, Pentium Y. The

Figure 1. Potential of improving caches and branch prediction.

...

COMPUTER ARCHITECTURE DEBATE

...

16 IEEE MICRO

Niagara X part of the processor consists of
many very lightweight cores for processing
the embarrassingly parallel part of an
algorithm. The Pentium Y part consists of
very few, heavyweight cores—or perhaps
only one—with serious hybrid branch pre-
diction, out-of-order execution, and so on,
to handle the serial part of an algorithm to
mitigate the effects of Amdahl’s law. To
ensure that the processor’s performance
does not suffer because of intrachip com-
munication, a high-performance intercon-
nect will need to connect the Pentium Y
core to the Niagara X cores. Additionally,
computer architects need to determine how
transistors can minimize the performance
implications of off-chip communication.

The case for multithreaded optimization:
Mark D. Hill

For decades, increasing transistor budgets
have allowed computer architects to im-
prove processor performance by exploiting
bit-level parallelism, instruction-level paral-
lelism, and memory hierarchies. However,
several ‘‘walls’’ will steer computer architects
away from continuing to design increasingly
more powerful single-threaded processors
and toward designing less complex, multi-
threaded processors.

The first wall is power. Some current-
generation processors require large, even
absurd, amounts of power. For these pro-
cessors—and to a lesser degree, other lower-
power processors—high power consumption
makes it more difficult and expensive to cool
the processor or forces the processor to
operate at a higher temperature, which can
lower the processor’s lifetime reliability. In
both cases, higher power consumption either
increases the operational cost of owning the
processor, by increasing the costs of electric-
ity and server room cooling, or decreases the
battery life. The current situation is very
similar to the one mainframe developers
faced about 10 to 15 years ago with emitter-
coupled logic. Although mainframe devel-
opers were able to switch to an alternative
technology that was initially slower but
eventually proved better—namely CMOS—
the computer architecture community does
not currently have a viable alternative
technology that we can switch to. Thus, we

must adopt a different approach to designing
our processors.

The second wall is complexity. The basic
issue with the complexity wall is that it is
becoming too difficult, and taking too long,
to design and verify next-generation pro-
cessors, and to manufacture them at
sufficiently high yield rates. Although some
computer architects think that this is
a significant wall, I do not, since I believe
that creative people like Joel Emer and Yale
Patt can create abstractions to manage the
complexity.

The third, and final, wall is memory,
which I think is a very significant problem.
Currently, accessing main memory requires
possibly hundreds of core cycles, which can
be hundreds of times slower than a floating-
point multiply. Consequently, accessing
main memory wastes hundreds, or even
thousands, of instruction execution oppor-
tunities. How much instruction-level or
thread-level parallelism is available for the
processor to exploit while waiting for
a memory access to complete? And, even if
there is a large amount of parallelism, the
power and complexity walls limit how the
computer architect can design a processor to
exploit that parallelism.

Given these three walls, the computer
architecture community needs to continue
to design processors that exploit parallelism
if we want to continue to improve processor
performance. However, I do not believe that
we can continue to exploit instruction-level
parallelism with identical operations, that is,
SIMD vectors. Rather, we need to exploit
a higher-level parallelism in which we can
do slightly different things along each
parallel path. Note that this higher-level
parallelism could be like the thread-level
parallelism that has been spectacularly
successful in narrow domains such as
database management systems, Web servers,
and scientific computing, but less successful
for other application spaces. More specifi-
cally, instead of exploiting bit-level and
instruction-level parallelism with wider,
more powerful single-threaded processors,
we need to use multicore processors to
exploit higher-level parallelism.

My approach to this problem is to
advocate the development of new hardware

..

NOVEMBER–DECEMBER 2007 17

and software models (Figure 2). The archi-
tecture community needs to raise the level
of abstraction at the software layer. Al-
though most people naturally do not think
in parallel, there are tremendous success
stories, like SQL language for relational
databases and Google’s MapReduce. In the
former case, most people can write de-
clarative queries and let the underlying

system optimize and create great parallelism
because of the strong properties of the
relational algebra. In the latter case, a limited
set of programs allow the user to program
even clusters relatively easily. However,
these two examples are point solutions only;
we need to develop these types of solutions
more broadly.

The key at the hardware level is to support
heterogeneous operations, and not just strict
SIMD. Additionally, the computer architec-
ture community needs to add mechanisms
that can improve the performance of soft-
ware models; examples include transactional
memory and speculative parallelism (for
example, thread-level speculation). Adding
these hardware features helps support the
software model, which allows the program-
mer to continue to think sequentially.

Multicore architecture
Hill: [removing faux white beard he has been
wearing in imitation of Patt; see Figure 3]
Let me take this beard off. It’s making me
think way too sequentially. So, Yale, is it
correct that you think that we should have
chips with lots of Niagaras and one beefier
core? Are you saying that I’ve won the
debate?

Figure 2. Toward a future hardware/software stack.

Figure 3. Panelists Yale Patt and Mark Hill and moderator Joel Emer (left to right). Hill

removed his beard during the discussion, claiming it caused him to think too sequentially.

Patt and Emer declined to remove theirs.

...

COMPUTER ARCHITECTURE DEBATE

...

18 IEEE MICRO

Patt: No.

Hill: You’re trying to say that’s the
uniprocessor argument?

Patt: I’m saying that you need one or
more fast uniprocessors on the chip.
Without that, Amdahl’s law gets in the
way. That is, yes, your Niagara thing will
run the part of the problem that is
embarrassingly parallel. But what about
the thing that really needs a serious branch
predictor or maybe a trace cache? I have no
idea what people are going to come up with
in the future. What I don’t want is for
people to get in the ‘‘don’t-worry-about-it’’
mind-set.

Hill: Okay, I agree that we need to have
multiple cores and that one of those cores
should be much more powerful, or alterna-
tively several of those cores should be much
more powerful.

Emer: So now Yale has won the debate.

Hill: No, that’s multiple cores.

Patt: I’m not suggesting that having
multiple cores is not important. What I
am suggesting is that we shouldn’t forget
the part of the problem that requires the
heavy-duty single core. You know, you hear
a lot of people say, ‘‘The time for that has
passed.’’ There are so many opportunities to
further improve single-core performance.
Take the stuff they did at Universitat
Politècnica de Catalunya (UPC) with
virtual allocate, where, at rename time, they
allocate a reorder buffer register but don’t
actually use it until it is really needed. They
save the power from the time they rename it
until the time they actually use it: doing
things virtually until you really need it,
turning off hardware until you really need
it… There’s a whole lot out there that in
fact students in this room will work on,
maybe, if they’re not told, ‘‘Forget it; the
real action is in multiple cores.’’ The fact of
the matter is, [smiling] the real action is in
Web design.

Hill: So, in your view what is the rate of
performance improvement that we can
expect to get out of a single core?

Patt: The rate is zero, if we think negatively.
Sammy Davis Jr. wrote an autobiography
entitled Yes I Can. That’s what I would like
to encourage people to think: ‘‘Yes I can’’—
as opposed to just giving up and saying,
‘‘You know, when it’s 10 billion transistors,
I guess it won’t be 20 Pentium 4s; it will be
200 Pentium 4s.’’

Hill: I guess I should remind you that I
absolutely think that we can push unipro-
cessors forward. We can get improvements,
but we’re not going to see the improve-
ments that we’ve seen in the past. And there
are markets out there that have grown used
to this opium of doubling in performance.
That is what we are going to lose going
forward.

Emer: How much architectural improve-
ment have we seen?

Patt: We’ve seen quite a bit. In fact, there
was a 2000 Asia and South Pacific Design
Automation Conference presentation by
a guy at Compaq/DEC [Digital Equipment
Corporation] named Bill Herrick, who said
that between the [Alpha] EV-4 and EV-8
there was a factor of 55 improvement in
performance.2 That represented a timeframe
of about 10 years. The contribution from
technology, essentially in cycle time, was
a factor of 7. Thus, the contribution from
microarchitecture was more than the con-
tribution from technology. EV-4 was the
first 21064, and EV-8, had it been de-
livered, would have been the 21464.

Take branch predictors. The Alpha
21064 used a last-taken branch predictor.
The Alpha 21264 used a hybrid two-level
predictor. Or, in-order versus out-of-order
execution: The first Alpha was in-order
execution. The third one was out-of-order
execution. Issue width: You know the first
Alpha was two-wide issue. The second one
was four-wide issue. I am not saying that we
should tell these students, ‘‘No multiple
cores.’’ I agree, we need to teach thinking
and programming in parallel. But we also
need to expose them to algorithms and to all
of the other levels down to the circuit level.

Audience member: [interjecting] Because
it’s a bad idea. Abstraction is a good thing.

..

NOVEMBER–DECEMBER 2007 19

Patt: Abstraction’s a good thing? Abstrac-
tion is a good thing if you don’t care about
the performance of the underlying entities.
You know, many schools teach freshman
programming in Java. So what’s a data
structure? Who cares? My hero is Donald
Knuth, who teaches data structures showing
you how data is stored in memory. Knuth
says that unless the programmer under-
stands how the data structure is actually
represented in memory, and how the
algorithm actually processes that data struc-
ture, the programmer will write inefficient
algorithms. I agree. Ask a current graduate
in computer science, ‘‘Does it matter
whether or not all of the data to be sorted
can be in memory at the same time?’’ How
many will say ‘‘Yes’’ and pick their sorting
algorithm accordingly?

Programming parallel machines
Audience member: I’d like to pick up on
that point. There seem to be a lot of people
now who argue that we won’t realize the
performance benefits of multicore unless
programmers explicitly manage data local-
ity. And in some cases that’s not so hard if it
naturally fits a stream or some other
paradigm. But is this a realistic expectation?
And what do we do?

Patt: I think there are two types of
programmers: yo-yos and serious program-
mers. And if you really want performance,
you don’t want yo-yos. So, yes, for every
programmer who knows what he or she is
doing, there are thousands who don’t.
Object-oriented isolates the programmer
from what’s going on, but don’t expect
performance.

Hill: But I don’t think it’s as simple as that.
I think that there are a lot of cases where
people are solving very deep intellectual
challenges in their problem domains. In-
sofar as we can automatically help them
create the locality, I think it’s a good thing
and we should do it.

Patt: Absolutely.

Hill: I am willing to give up some
performance. I just don’t see people man-
aging the details of locality. I think the

tougher problem is parallelizing the work
and coming up with the abstractions
somewhere in the tool chain so that the
work will be parallelized. I think that
locality is also important, but it is not the
hardest thing to do.

Patt: Yes, the developer needs tools to break
down the work at large levels, but if you
want performance, you’re going to need
knowledge of what’s underneath.

Providing simpler programming models
Hill: I still think that even sequential
consistency is too complicated for those
programmers. You’re already reasoning with
arbitrary threads and arbitrary nondetermin-
ism and locks, so who wants to also reason
about memory reordering and fences?

Patt: You know, I’m hopeful that Mark is
right and that someday we will think
parallel.

Hill: The key is enabling people to think at
a higher level of abstraction. Take SQL:
There is a lot of parallelism underneath, but
people don’t think parallel when they write
SQL.

Patt: So, somehow, magically, these in-
termediate layers will do it for you?

Emer: That’s the research that Mark
advocates pursuing more aggressively, in
lieu of the solutions for higher single-stream
performance that you’re advocating.

Hill: In addition to! We’ve got to know
a two-handed economist.

Patt: And certainly there are people work-
ing on trying to take the sequential
abstraction of the program and having the
compiler automatically parallelize that code.

Hill: I don’t think that’s good enough. I
mean, just taking C or Java and parallelizing
it is not good enough. We need to go higher
than that.

Patt: I agree with that. In fact, that’s Wen-
mei [Hwu’s] point, that you should have
the library available and the heavy-duty
logic available, which I agree with also.

...

COMPUTER ARCHITECTURE DEBATE

...

20 IEEE MICRO

Checkpointed processors
Audience member: Any thoughts on
checkpointed processors and how they
change the trade-off of processor complexity
and performance, and perhaps the func-
tionality for multithreading.

Hill: I think checkpointed processors are
a very interesting and viable technique that
are going to make uniprocessors better, but
there are also arguments that they can help
multiprocessing. For example, you have
a paper accepted to ISCA on bulk sequential
consistency (SC) where the checkpointed
processors help multiprocessing. I don’t see
checkpointed processors as fundamentally
tipping this debate, but they are a good idea.

Emer: So, you’re saying that there’s research
that applies to both uniprocessor and
multiprocessor domains, potentially.

Patt: That’s right.

Breaking down the barriers
around architects
Audience member: In general, I agree with
Mark [Hill], and I’d like to amplify his
comments that good abstraction to paral-
lelism using a parallel programming model
is probably the most important point. How
can architects enable that? In my view, it’s
not going to happen with just architects
working alone. It’s not going to happen if
the other people are working alone. We
really need to work together, and it’s very
hard to do that. So, the question is, what
can we really do to enable that synergy?

Hill: I completely agree. Doing it alone, we
can make some progress. But to have the
real progress, we have to work all the way up
to theoreticians. Well, there are two ways
we’re going to do this. One is if we can
convince our colleagues to do the research.
The other is if performance improvement
falls flat on its face for a number of years;
then they’ll start paying attention. I think
we want to try to use the former route,
because the latter route is not going to be
pretty.

Emer: We’ve been in a situation for
a number of years where we’ve been able

to work behind an architectural boundary
to make processors go faster, and software
people can be largely oblivious to what
we’re doing.

Hill: A very concrete example of this is that
Microsoft had no interest in architecture
research until recently. And suddenly it
occurred to them that being ignorant of
what’s happening on the other side of the
interface is no longer a viable strategy.

Emer: They probably did get a lot of
performance by being oblivious. That’s all
the legacy code that we do have.

Audience member: Actually, a good anal-
ogy is the memory consistency model issue.
The weaker models were exposed to the
software community for the longest time,
and they chose to ignore them. But in the
last five or six years, there’s been this huge
effort from the software community to get
things fixed there. So, I do see a hope that
the other people will band together with
architects, but I think that something needs
to be done proactively to enable that
synergy to actually happen.

Patt: Yeah, so what [the audience member]
has opened up is whether this should be
a sociology debate rather than a hardware
one, which I think is right. I think we are
uniquely positioned where we are as
architects because we’re the center. There
are the software people up here, and the
circuit designers down here, and we—if
we’re doing our job—we see both sides. We
are uniquely positioned to engage those
people. Historically, you said that software
people are oblivious, and yet they still get
performance because we did our job so well.
I think we can continue to do our job so
well. I don’t think we’re going to run out of
performance if we address Amdahl’s bottle-
neck. For a certain amount of time I think
[the audience member] is right, that we
need to be engaging people and problems
on a number of levels. In fact, I would say,
the number one problem today has nothing
to do with performance, and that is security.

Hill: I just want to add one more comment.
I think what’s really tough is to parallelize

..

NOVEMBER–DECEMBER 2007 21

code. You may notice that at Illinois too—
a lot of software people did some parallel
work in the 1980s and early 1990s. But the
efforts petered out, and they left! And now
there are very few parallel software experts
around.

What if there were no power wall?
Audience member: Hypothetically, if we
didn’t have a power wall, would we be able
to continue scaling uniprocessor perfor-
mance and thus avoid having to go after
parallelism?

Hill: There’s still the memory wall. The
power wall makes it worse because of the
high cost in power for many forms of
speculation.

Patt: If the biggest problem today is the
memory wall, how do we make this
bottleneck in the code we want to run still
perform well? Again, this is an argument for
faster uniprocessors. There will always still
be issues with the memory wall, intercon-
nect, and other areas that get in the way of
single-threaded performance. The power
wall has influenced our thinking and has
also helped us to cop out, because architects
reason that putting a number of identical
low-power cores on the same chip solves the
power wall problem.

Hill: I agree that just doubling the number
of cores is a cop-out.

Data parallelism?
Audience member: Mark [Hill] has seemed
to downplay the potential for data parallel-
ism on the hardware level. It is much
simpler to exploit data parallelism from
a workload than thread-level parallelism,
especially when dealing with a large number
of cores (about 1,000) on a chip.

Emer: This kind of parallelism is much
more power-efficient than multiple-core
parallelism, because one can save all the
bookkeeping overhead.

Hill: We need to have data parallelism (not
SIMD), but I do not believe that data
parallelism is as simple as doing identical
operations in the same place due to

conditionals, encryption/decryption, and
so on. It’s not the same at the lowest level.
I’m not convinced that data parallelism is
sufficient at the lowest operation level, but
it is needed in the programming model.

Vectors are a cool solution, but they
haven’t seemed to generalize beyond a few
classes of applications these past 35 years.
The difference between vector processing
and multicore processing is that we may
have no alternative with the latter. The
reason for this is that the uniprocessors will
get faster through creative efforts on the part
of people like Yale [Patt], but not at a rate
of 50 percent a year. We need not only
additional cores, but also additional mech-
anisms to use them, and that is what
computer architects have to invent. Simply
stamping out the cores may be okay for
server land, but not for clients.

Patt: I’m not interested in server land—
although that’s what made SMT (simulta-
neous multithreading). If you have lots of
different jobs, why not just have simpler
chips and let this job run here and that job
run there?

Emer: What does SMT have to do with
that?

Patt: SMT was a solution looking for
a problem, and the problem it found was
servers.

Hill: I completely disagree with Yale.
Multiple threads are a way to hide memory
latency.

Patt: Using SMT to hide memory latency is
application dependent, and not always
a solution to the memory wall problem.
Thus, we come back to Amdahl’s law,
which we need to continue to address.

Emer: That’s what SMT allowed you to do!

The relationship between locality
and parallelism
Audience member: You said that locality is
less of a problem than parallelism. I would
argue that localization is parallelism. If you
don’t have independent, local tasks, then you
can’t have parallelism; both are strongly
intertwined. Looking at parallel applications,

...

COMPUTER ARCHITECTURE DEBATE

...

22 IEEE MICRO

they did a good job except when parallelism
and locality were in conflict, resulting in too
much communication.

Hill: Multicore does change things. For
example, multicore has much better on-
chip, thread-level communication than was
previously possible. But multicore chips do
have a different type of locality, in that the
union of the cores should not thrash the
chip’s last-level cache. I would like pro-
grammers to manage locality, but it seems
very difficult to do so.

Audience member: I agree that it’s hard,
but if you don’t, it doesn’t work.

Emer: Yale, [the audience member] is
supporting you.

Patt: Then I should just sit quietly.

Where should industry put its resources?
Audience member: The business side
simply wants applications to run faster.
Where should computer manufacturers put
their resources? What should they produce?

Emer: This is the fundamental question:
How do we allocate our resources as chip
designers?

Patt: I would produce Niagara X, Pentium
Y. I’d worry about lots of mickey-mouse
cores and a few heavy-duty cores with a good
interconnection network so you don’t have
to suffer when you move between cores.
Some would argue whether the memory
model on the chip is correct, but I think
that’s the chip of the future.

Hill: I agree with Yale that a multiprocessor
like his Niagara X, Pentium Y is a good
idea. I would also put effort into hardware
mechanisms, compiler algorithms, and pro-
gramming-model changes that can make it
easier to program these machines.

Patt: I agree with that. MICRO

..

References
1. R. Chappell, private communication, 2003.

2. B. Herrick, ‘‘Design Challenges in Multi-

GHz Microprocessors,’’ presentation, 2000.

Asia South Pacific Design Automation Conf.

(ASP-DAC 00); http://www.aspdac.com/

2000/eng/ap/herrick2.pdf.

Joel Emer is an Intel Fellow and director of
microarchitecture research at Intel, where he
leads the VSSAD group. He also teaches
part-time at the Massachusetts Institute of
Technology. His current research interests
include performance-modeling frameworks,
parallel and multithreaded processors, cache
organization, processor pipeline organiza-
tion, and processor reliability. Emer has
a PhD in electrical engineering from the
University of Illinois. He is an ACM Fellow
and a Fellow of the IEEE.

Mark D. Hill is a professor in both the
Computer Sciences and Electrical and
Computer Engineering Departments at the
University of Wisconsin–Madison, where
he also coleads the Wisconsin Multifacet
project with David Wood. His research
interests include parallel computer system
design, memory system design, computer
simulation, and transactional memory. Hill
has a PhD in computer science from the
University of California, Berkeley. He is
a Fellow of the IEEE and the ACM.

Yale N. Patt is the Ernest Cockrell Jr.
Centennial Chair in Engineering at the
University of Texas at Austin. His research
interests focus on harnessing the expected
benefits of future process technology to
create more effective microarchitectures for
future microprocessors. He is a Fellow of
the IEEE and the ACM.

Joshua J. Yi is a performance analyst at
Freescale Semiconductor in Austin, Texas.
His research interests include high-perfor-
mance computer architecture, simulation,
low-power design, and reliable computing.
Yi has a PhD in electrical engineering from
the University of Minnesota, Minneapolis.
He is a member of the IEEE and the IEEE
Computer Society.

Derek Chiou is an assistant professor in the
Electrical and Computer Engineering De-
partment at the University of Texas at
Austin. His research interests include com-

..

NOVEMBER–DECEMBER 2007 23

puter system simulation, computer archi-
tecture, parallel computer architecture, and
Internet router architecture. Chiou has
a PhD in electrical engineering and com-
puter science from the Massachusetts In-
stitute of Technology. He is a senior
member of the IEEE and a member of the
ACM.

Resit Sendag is an assistant professor in the
Department of Electrical and Computer
Engineering at the University of Rhode
Island, Kingston. His research interests
include high-performance computer archi-

tecture, memory systems performance is-
sues, and parallel computing. Sendag has
a PhD in electrical and computer engineer-
ing from the University of Minnesota,
Minneapolis. He is a member of the IEEE
and the IEEE Computer Society.

Direct questions and comments about this
article to Joel Emer, joel.emer@intel.com.

For more information on this or any

other computing topic, please visit our

Digital Library at http://computer.org/

csdl.

...

COMPUTER ARCHITECTURE DEBATE

...

24 IEEE MICRO

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

