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Abstract— Composing a representative workload is a crucial
step during the design process of a microprocessor. The workload
should be composed in such a way that it is representative for the
target domain of application and yet, the amount of redundancy
in the workload should be minimized as much as possible in
order not to overly increase the total simulation time. As a
result, there is an important trade-off that needs to be made
between workload representativeness and simulation accuracy
versus simulation speed.

Previous work used statistical data analysis techniques to
identify representative benchmarks and corresponding inputs,
also called a subset, from a large set of potential benchmarks
and inputs. These methodologies measure a number of program
characteristics on which Principal Components Analysis (PCA)
is applied before identifying distinct program behaviors among
the benchmarks using cluster analysis. In this paper we propose
Independent Components Analysis (ICA) as a better alternative
to PCA as it does not assume that the original data set has
a Gaussian distribution, which allows ICA to better find the
important axes in the workload space. Our experimental results
using SPEC CPU2000 benchmarks show that ICA significantly
outperforms PCA in that ICA achieves smaller benchmark
subsets that are more accurate than those found by PCA.

I. INTRODUCTION

Designing a new microprocessor is both a complex and
time-consuming task. One of the tradeoffs that needs to be
made is what benchmarks (and appropriate inputs) need to be
chosen during the design process. The selection of benchmarks
for inclusion in a benchmark suite is called workload com-
position or benchmark subsetting. A well composed workload
should address two major concerns. First, the workload should
be representative for a larger set of applications, i.e., we want
all typical program behaviors to be represented in the work-
load, no major program behavior should be omitted. Second,
the number of benchmarks in the workload should be limited
because of simulation time concerns. As such, a tradeoff
needs to be made between benchmark suite representativeness
(and thus simulation accuracy) and simulation time. Previous
research has shown that redundancy exists across benchmarks
and inputs so that the number of benchmarks and inputs can
be reduced without compromising accuracy too much [1], [2],
[3], [4], [5].

Prior work on workload composition and benchmark suite
subsetting first measured a number of program characteris-
tics for a large number of benchmarks and inputs. These
program characteristics can be microarchitecture-dependent or

microarchitecture-independent or a mix of both. In a sec-
ond step, these per-benchmark/input program characteristics
are analyzed through statistical data analysis. Previous work
applied Principal Components Analysis (PCA) to reduce the
dimensionality of the data set. Once the data set is analyzed
through PCA, cluster analysis is applied to group similarly
behaving benchmarks/inputs into so called clusters of distinct
program behaviors. Then, a representative benchmark/input
can be chosen from each cluster for inclusion in the reduced
benchmark suite.

In this paper, we propose Independent Components Analysis
(ICA) as a better alternative to PCA. The key difference
between PCA and ICA is that PCA strives to find uncorrelated
axes whereas ICA attempts to find independent axes in a
multi-dimensional space—note that independent axes are also
uncorrelated, i.e., independence is stronger than uncorrelate-
ness. The main reason for ICA to be better than PCA is that
ICA does not assume that the original data set has a Gaussian
distribution, as PCA does. When comparing behavioral char-
acteristics between benchmarks/inputs, it could be the case
however that the data set is clustered in the first place and
thus is not normally distributed. As a result, ICA is better
capable to find the ‘important’ axes in the multi-dimensional
space. Through experimental evaluation using SPEC CPU2000
benchmarks we conclude that ICA outperforms PCA for
benchmark subsetting in that ICA produces both (i) fewer
benchmark/input pairs and (ii) more accurate performance
predictions.

Many applications can benefit from this work. For instance,
benchmark standardization institutions such as SPEC, TPC,
EEMBC, and so forth can use this methodology for com-
posing their benchmark suites. Obviously, when composing
benchmark suites it is of primary importance that the bench-
mark suites being composed are representative of the real-life
application domains they target. The methodology presented in
this paper can be used to determine the important benchmarks
and inputs for inclusion in the benchmark suite. Researchers
and computer designers can also benefit from this work. The
methodology presented here can be used to identify a limited
set of important benchmarks and inputs from a larger set of
potentially interesting benchmarks in order to reduce the total
simulation time required to search a large design space.

This paper is organized as follows. We first discuss prior



work in workload composition and benchmark suite subset-
ting. We subsequently discuss the workload characteristics
that we use as input for our methodology in Section III. We
then present the two statistical data analysis techniques that
we consider in this paper for workload composition: princi-
pal components analysis (PCA), as it was used in previous
work, and independent components analysis (ICA), which we
propose in this paper as a better alternative than PCA. After
detailing our experimental setup in Section V, we evaluate the
feasibility of ICA for workload composition in Section VI.
Finally, we conlude in Section VII.

II. PRIOR WORK

Several different approaches have been used to mea-
sure benchmark similarity in previous studies. Saavedra and
Smith [6] presented a metric that is based on dynamic program
characteristics for the Fortran language. Their metric includes
the instruction mix, the number of function calls, the number
of address computations, etc. For measuring the difference
between benchmarks they used the squared Euclidean distance.
An important shortcoming of this methodology is the use of
the Euclidean distance in the original workload space. Corre-
lation and dependence between variables make the Euclidean
distance an unreliable metric for quantifying benchmark sim-
ilarity.

To address this shortcoming, Eeckhout et al. [1] proposed
the use of principal components analysis (PCA) to get rid of
the correlation in the data set. The methodology presented
in [1] forms the basis for the work presented in this paper. A
number of program characteristics are measured for a number
of benchmarks/inputs on which PCA is applied. Then, cluster
analysis is applied on this transformed data set in order to find
the distinct program behaviors among the benchmarks.

The workload characteristics used in [1] as input
to the workload analysis methodology was a mix of
microarchitecture-independent and microarchitecture-
dependent characteristics. The microarchitecture-independent
metrics are instruction mix, inherent instruction-level
parallelism, etc., while the microarchitecture-dependent
metrics are cache miss rates, branch mispredict rates, etc. One
potential pitfall in using microarchitecture-dependent metrics
in a workload analysis methodology is that the results of the
analysis might be biased by the microarchitecture-dependent
metrics, i.e., it is unclear how the reduced workload will
perform on other microarchitectures. To address this issue,
Phansalkar et al. [2] feed the workload analysis methodology
with microarchitecture-independent metrics only. Note that
these microarchitecture-independent metrics are still ISA and
compiler dependent. On the opposite side of the spectrum
there is some work done on benchmark subsetting using
microarchitecture-dependent metrics only, see for example [3],
[4].

Most of this previous work used Principal Components
Analysis (PCA) prior to applying cluster analysis. In this paper
we show that Independent Components Analysis (ICA) outper-
forms PCA. The work presented in this paper is orthogonal to

this previous work. The methodology we propose here based
on ICA can be applied to any data set, irrespective of whether
the data set is microarchitecture-independent or not.

Yi et al. [5] take a different approach and propose a
technique for grouping benchmarks based on how they stress
the components of a processor. Their method is based on a
Plackett-Burman design of experiments. A Plackett-Burman
design is a technique that allows researchers to measure the
impact of variables by making a limited number of measure-
ments. For example, consider the case where we want to
measure the impact of n variables where each variable can
have b unique values. The total number of experiments (or in
our case simulations) that need to be performed for this full
factorial design is O(bn). The multifactorial Plackett-Burman
design, on the other hand, is a fractional design that requires
only O(n) experiments to determine the impact of n variables
and a subset of their interactions. This is done by varying
all parameters in carefully chosen combinations to stress the
critical corners of the overall design space.

Citron [7] performed a survey on the SPEC CPU bench-
marks used in the ISCA, Micro and HPCA computer archi-
tecture conferences. He observed that some benchmarks are
more popular than others, i.e., researchers tend to use some
benchmarks more frequently than others. The question how-
ever is whether these subsets are representative for the whole
SPEC CPU2000 benchmark suite. The methodology proposed
in this paper could be used to identify a representative subset.

Reducing the simulation time has received a lot of attention
in the recent literature. Various research groups have proposed
various approaches for reducing the simulation time. Examples
are reduced input sets [8], [9], sampling [10], [11], [12], [13],
and statistical simulation [14], [15], [16]. These approaches
however, are orthogonal to benchmark suite subsetting as dis-
cussed in this paper. When a reduced workload is composed,
any of these simulation speedup approaches can be used to
reduce the overall simulation time even further.

III. PROGRAM CHARACTERISTICS

The workload space could be viewed as a p-dimensional
space in which the dimensions are determined by a set of
workload characteristics. The individual benchmarks can then
be displayed by a p-dimensional vector within this space.

An important issue is the choice of the dimensions in
this workload space. Intuitively, the program characteris-
tics that should be used are those that affect performance.
As mentioned before, one could either choose a set of
microarchitecture-dependent characteristics, such as cache
miss rates, branch mispredict rates, IPC numbers, etc., or
one could choose a mix of microarchitecture-dependent and
microarchitecture-independent characteristics, or finally, one
could choose a set of microarchitecture-independent metrics
only. The program characteristics that are selected in this
paper to build our data set are a mix of microarchitecture-
dependent and microarchitecture-independent characteristics.
The program characteristics that we consider in this paper
are shown in Table I; in fact, these are the same data set of



No. Category Program characteristic
1 Instruction mix Percentage integer arithmetic operations
2 Percentage logical operations
3 Percentage shift and byte manipulation operations
4 Percentage load/store operations
5 Percentage control operations
6 Branch predictability Branch prediction accuracy for a hybrid branch predictor

selecting among an 8K-entry bimodal predictor and an 8K-entry gshare predictor
(history of 12 branches); meta predictor contains 8K entries

7 Control flow Number of instructions between two sequential flow breaks,
or the number of instructions between two taken branches

8 Data stream behavior Miss rate for an L1 8KB direct-mapped D-cache
9 Miss rate for an L1 16KB direct-mapped D-cache

10 Miss rate for an L1 32KB 2-way set-associative D-cache
11 Miss rate for an L1 64KB 2-way set-associative D-cache
12 Miss rate for an L1 128KB 4-way set-associative D-cache
13 Instruction stream behavior Miss rate for an L1 8KB direct-mapped I-cache
14 Miss rate for an L1 16KB direct-mapped I-cache
15 Miss rate for an L1 32KB 2-way set-associative I-cache
16 Miss rate for an L1 64KB 2-way set-associative I-cache
17 Miss rate for an L1 128KB 4-way set-associative I-cache
18 Instruction-level parallelism (ILP) ILP on an infinite-resource processors, i.e., assuming an infinite

number of functional units, infinite decode/issue/reorder width,
infinite window size, perfect caches, perfect branch prediction,
unit execution latency. In other words, only read-after-write dependencies
are considered through registers as well as through memory.

TABLE I

PROGRAM CHARACTERISTICS USED FOR CHARACTERIZING THE BENCHMARK/INPUT PAIRS.

characteristics as used in [1]. This set consists of 18 metrics
measuring microarchitecture-independent characteristics such
as instruction mix, number of sequential flow breaks and inher-
ent instruction-level parallelism (ILP), and microarchitecture-
dependent metrics such as instruction and data cache miss rates
and branch mispredict rates. These metrics were chosen in
such a way that they cover a large spectrum of program char-
acteristics. Note that a good choice of the important metrics
for quantifying benchmark behavior is extremely important
for a workload composition methodology. For example, using
the characteristics from Table I for selecting benchmarks and
inputs for doing research on megabyte L2 caches might be
inappropriate because the caches being considered here were
small L1 caches. Note however that the appropriate selection
of program characteristics is outside the scope for this paper—
the focus in this paper is on the statistical analysis.

These program characteristics are measured for all bench-
mark/input pairs considered in this study. There are 63 bench-
mark/input pairs and they are given in Section V. As such
we obtain a 63 × 18 matrix in which the rows are the
benchmark/input pairs and in which the columns are the 18
program characteristics. Prior to doing any statistical analysis
we first normalize this data set, i.e., each variable (program
characteristic) in the data set is transformed so that it has a
mean of zero and a variance of one over all benchmark/input
pairs. The reason for doing the normalization prior to statistical
analysis is the heterogeneity of the data set. Some program
characteristics, such as ILP, vary in the range of tens, whereas
other program characteristics vary in the range of fractions
smaller than 1, such as the cache miss rates. Normalization
puts all the program characteristics on a common scale. In
the above example, measuring benchmark similarity using
unnormalized data would give a higher weight to the ILP
metric than to the cache miss rate metrics. This 63 × 18
normalized data matrix is used as input for both PCA and

ICA.

IV. STATISTICAL DATA ANALYSIS

This section discusses both principal components analysis
(PCA) and independent components analysis (ICA). There are
basically two important reasons why we want to apply these
statistical data reduction techniques for workload composition.
First, a statistical data analysis technique attempts to find
the key ‘dimensions’ in a data set. Both PCA and ICA try
to find important axes in the original workload space so
that important underlying (latent) program metrics become
apparent in the axes obtained from the analysis. The second
reason for applying a statistical data analysis technique is
to reduce the dimensionality of the data set. Reducing the
dimensionality of a data set increases its understandability.

A. Principal Components Analysis (PCA)

Principal components analysis [17] builds on the assumption
that many variables (in our case, program characteristics) are
correlated and hence measure the same or similar properties
of the various inputs (which, in our case, are the bench-
marks/input pairs). PCA computes new variables called prin-
cipal components that are linear combinations of the original
variables such that all principal components are uncorrelated.
PCA transforms the p variables X1, X2, . . . , Xp into p prin-
cipal components Z1, Z2, . . . , Zp with Zi =

∑p

j=1
aij · Xj .

This transformation has the following important properties:
(i) V ar[Z1] ≥ V ar[Z2] ≥ . . . ≥ V ar[Zp] which means
that Z1 contains the most information and Zp the least; and
(ii) Cov[Zi, Zj ] = 0, ∀i 6= j, which means that there is
no information overlap between the principal components.
Note that the total variation in the data remains the same
before and after the transformation, namely:

∑p

i=1
V ar[Xi] =∑p

i=1
V ar[Zi]. Mathematically speaking, PCA actually solves

the eigenvalue problem over the correlation matrix.



As stated in the first property in the previous paragraph,
some of the principal components have a high variation while
others have a small variation. By removing the components
with the lowest variation from the analysis, we can reduce
the number of program characteristics while controlling the
amount of information that is thrown away. We retain q prin-
cipal components which is a significant information reduction
since q � p in most cases. To measure the fraction of
information retained in this q-dimensional space, we use the
amount of variation

∑q

i=1
V ar[Zi]/

∑p

i=1
V ar[Xi] accounted

for by these q principal components. Typically 85% to 90% of
the total variation should be explained by the retained principal
components.

Recall that the p original variables are the program char-
acteristics that build up the original workload space. By
examining the most important q principal components, which
are linear combinations of the original program characteristics,
meaningful interpretations can be given to these principal
components in terms of the original program characteristics. A
coefficient aij that is close to +1 or -1 implies a strong impact
of the original characteristic Xj on the principal component
Zi. A coefficient aij that is close to 0 on the other hand,
implies no impact. We use STATISTICA [18] for applying
PCA.

An important application for a data reduction technique such
as PCA is the visualization of the workload space. Indeed,
the benchmark/input pairs can be displayed as points in the
q-dimensional space built up by the q principal components.
This can be done by computing the values of the q retained
principal components for each benchmark. As such, a view can
be given on the workload space and benchmark similarity can
be studied. The projection in the q-dimensional space is much
easier to understand than a view on the original p-dimensional
space for two reasons: (i) q is much smaller than p: q � p,
and (ii) the q-dimensional space is uncorrelated.

PCA makes the following assumptions: (i) linear combi-
nations of the data dimensions are valid, (ii) the statistical
structure of the data can be captured by the mean and covari-
ance, i.e., the components have a Gaussian distribution. This
implies that all statistical dependence between components
can be captured via correlation. When these assumptions
hold, PCA is a good tool to use. But in many cases, not
all assumptions are valid. In particular, the notion that all
statistical dependence is captured by correlation is frequently
too restrictive. Nevertheless, previous work using PCA has
shown that PCA is fairly accurate (even if the data is not
Gaussian distributed), however, the contribution of this paper
is to show that ICA is even more accurate. Note also that
ICA is normally used for source separation in signals—an
example of which is the cocktail party problem, i.e., that is
given a recording of many signals, how can you separate out
the various sources? The problem being addressed here is not
exactly source separation. As a result, ICA did not seem to
be a solution for identifying benchmark similarity in previous
work. However, on seeing the distribution of the underlying
data, ICA becomes apparent as a viable solution.

B. Independent Components Analysis (ICA)

Independent Components analysis (ICA) is a data analysis
technique that relaxes the assumption that the underlying data
be Gaussian distributed. Instead, ICA tries to produce com-
ponents that are statistically independent, which is a stronger
requirement than “uncorrelatedness” as discussed before. It is
similar to PCA in that it also produces a linear representation
(although non-linear forms exist—we restrict the discussion
and implementation to the linear form though).

a) Statistical Independence and Uncorrelatedness: Two
variables y1 and y2 are defined as being “statistically indepen-
dent” if the joint probability density p(y1, y2) can be expressed
as the following:

p(y1, y2) = p(y1)p(y2). (1)

If two variables are independent, they are said to be uncor-
related. However, the inverse is not true. Two variables that are
uncorrelated can still be dependent on each other. For example,
two random variables y1 and y2 are said to be uncorrelated if
their covariance is zero, i.e. [19]:

E{y1, y2} = E{y1}E{y2}. (2)

ICA estimation procedures consist of estimating a mixing
matrix A, and its inverse W , such that the measured data
consisting of column vectors xi are related in the following
way to the independent components, si:

x = As (3)

and
s = Wx (4)

Next, we discuss one method of estimating the matrix A
(and consequently its inverse W ). At this point, we have a
representation that is similar to PCA, i.e the matrix A and its
inverse W are linear representations of the data x. The only
difference being that the space that the column vectors (axes)
of A (or W ) describe need not necessarily be an orthogonal
space. In PCA, it is always the case that the column vectors
of A be orthogonal. Vectors s are the independent components
that are mutually independent of each other and are non-
gaussian distributed.

b) Negentropy: Since ICA is interested in extracting the
dimensions that highlight the non-gaussianity of the data, we
need a measure of the non-gaussianity. An important measure
is negentropy. To explain negentropy, we need to revisit the
idea of entropy. The measure of entropy is an important
concept in information theory. The more “random” a variable
is, the larger its entropy. For a random variable x, its entropy,
H(x) can be defined by

H(x) = −

∫
f(x)log(f(x))dx (5)

If x is a random variable whose distribution is Gaussian, then
it is proven that x’s entropy is high. To define a distribution
of a random variable as non-Gaussian, we need to define



its distribution with reference to a Gaussian distribution.
Therefore, negentropy (J) is defined as

J(x) = H(xgauss) − H(x) (6)

where xgauss is a Gaussian distribution with the same co-
variance matrix as x. This approximation is hard to obtain in
practice because one would need an estimate of the probability
density function (PDF) of x which might not always be easy
to obtain analytically for arbitrary distributions. Therefore,
negentropy is practically estimated in the following way [19],
[20]:

J(x) ≈

p∑
i=1

ki[E{G(xi)} − E{G(v)}]2 (7)

where ki are some positive constants, v is a gaussian random
variable with mean 0 and variance 1 and Gi are some non-
quadratic functions of which some examples are:

G1(u) =
1

a1

logcosha1u, G2(u) = −exp(
−u2

2
) (8)

where 1 ≤ a1 ≤ 2.
The function G should be chosen such that it does not

grow too fast—this allows for a more robust estimator. In our
analysis, we used the publicly available software, FastICA [20]
to implement ICA. FastICA is based on a fixed point algo-
rithm for finding a maximum of non-Gaussianity of wT x as
estimated by Eqn. 7. The basic form of the algorithm chooses
initial w vectors and iterates until Eqn. 7 (the derivation of
Eqn. 8 is actually used) has converged for all the w vectors.

For an in-depth discussion of ICA and FastICA, please refer
to [19], [21].

C. Cluster Analysis

As mentioned previously, the next step in our methodology
is to apply cluster analysis [17] on the transformed data set—
note that we can apply cluster analysis in both the PCA and
ICA space. Cluster analysis is a data analysis technique that
is aimed at clustering n cases, in our case benchmark/input
pairs, based on the measurements of q variables, in our case
the dimensions obtained from PCA or ICA. The final goal is
to obtain a number of groups containing various benchmarks
that exhibit ‘similar’ behavior.

One particular approach to cluster analysis is K-means
clustering. K-means clustering produces exactly K clusters
with the greatest possible distinction. The K-means clustering
algorithm works as follows. In each iteration, the distance
is calculated for each case to the center of each cluster. A
case then gets assigned to the closest cluster. As such, new
cluster centers can be computed. This algorithm is iterated
until no more changes are observed. It is well known that the
result of K-means clustering can be dependent on the choice
of the initial cluster centers. Therefore we consider multiple
randomly chosen initial cluster centers and then consider
the clustering with the optimal BIC criterion. The Bayesian
Information Criterion (BIC) is a score that indicates how well
the data fits the model (number of clusters in this case). The

progr input insns
vpr ref 94,331

smred 6
mdred 92
lgred 857
train 10,457

vortex ref1 118,977
ref2 128,678
ref3 133,044
smred 88
mdred 415
lgred 1,154
train 17,813
test 9,808

twolf ref 346,485
smred 92
mdred 259
lgred 973
train 13,200

parser ref 546,748
smred 269
mdred 612
lgred 4,527
train 13,433
test 4,203

bzip2 ref-source 108,878
ref-program 124,927
ref-graphic 143,565
lgred-source 1,820
lgred-program 2,159
lgred-graphic 2,644
train 61,128
test 8,822

progr input insns
gcc ref-scilab 62,031

ref-integrate 13,164
ref-expr 12,086
ref-200 108,670
ref-166 46,918
smred 97
mdred 551
lgred 5,117
test 2,016

gzip ref-source 84,367
ref-random 82,167
ref-program 168,868
ref-log 39,527
ref-graphic 103,706
smred-source 1,486
smred-random 1,362
smred-program 4,025
smred-log 602
smred-graphic 4,984
mdred-source 1,552
mdred-random 1,362
mdred-program 2,732
mdred-log 597
mdred-graphic 1,209
lgred-source 1,583
lgred-random 1,361
lgred-program 2,858
lgred-log 593
lgred-graphic 1,786
train 57,970
test 3,367

TABLE II

THE SPEC CPU2000 BENCHMARKS AND THEIR INPUTS USED IN THIS

PAPER, ALONG WITH THEIR DYNAMIC INSTRUCTION COUNT (IN

MILLIONS).

algorithm uses a Bayesian approach and estimates a posterior
probability for each cluster conditioned on the data. The model
with the highest probability is returned. For applying the K-
means clustering we use the SimPoint v2.0 software1 [11],
[12].

V. EXPERIMENTAL SETUP

In this paper we use a number of SPEC CPU2000 in-
teger benchmarks; we used the Alpha binaries from the
SimpleScalar website2. We use multiple inputs for each
benchmark—there are 63 benchmark-input pairs in total; Table
2 lists both the benchmarks and input sets. Some of the inputs
are taken from the SPEC distribution, others are taken from
MinneSPEC. MinneSPEC is a set of reduced inputs for various
SPEC CPU2000 benchmarks [8], [9]. These reduced input
sets are derived from the reference inputs using a number
of techniques: modifying inputs (for example, reducing the
number of iterations), truncating inputs, etc. A distinction is
made between three sets of reduced inputs: smred for short
simulations (100 million instructions), mdred for medium
length simulations (500 million instructions) and lgred for
full length, reportable simulations (1 billion instructions). We
chose these seven SPEC CPU benchmarks for the following
reasons. First, for some other SPEC CPU benchmarks we
obtained different instruction counts in our simulation and
instrumentation infrastructures—this is due to system call

1http://www.cs.ucsd.edu/∼calder/simpoint
2http://www.simplescalar.com



Program characteristic K-S S-W
1 % arithmetic ops p < 0.01 p = 0.0018

2 % logical ops p < 0.20 p = 0.0156

3 % shift and byte ops p < 0.01 p = 0.0000

4 % load/store ops p < 0.01 p = 0.0008

5 % branch ops p < 0.01 p = 0.0001

6 branch predictability p < 0.15 p = 0.0198

7 control flow p < 0.10 p = 0.4069

8 miss rate 8KB D-cache p < 0.01 p = 0.0000

9 miss rate 16KB D-cache p < 0.01 p = 0.0000

10 miss rate 32KB D-cache p < 0.05 p = 0.0000

11 miss rate 64KB D-cache p < 0.01 p = 0.0000

12 miss rate 128KB D-cache p < 0.01 p = 0.0000

13 miss rate 8KB I-cache p < 0.01 p = 0.0000

14 miss rate 16KB I-cache p < 0.01 p = 0.0000

15 miss rate 32KB I-cache p < 0.01 p = 0.0000

16 miss rate 64KB I-cache p < 0.01 p = 0.0000

17 miss rate 128KB I-cache p < 0.01 p = 0.0000

18 ILP p < 0.01 p = 0.0000

TABLE IV

TESTING FOR NORMALITY USING THE KOLMOGOROV-SMIRNOV (K-S)

AND THE SHAPIRO-WILKS’ W TEST (S-W).

effects. Second, we limited the number of benchmarks because
of the long instrumentation and simulation times that were
required for collecting the data. Note also that the goal of this
paper is to focus on the statistical techniques rather than to
select the representative SPEC CPU2000 benchmarks.

The program characteristics that we measure in this paper
are obtained using ATOM [22] which is a binary instrumenta-
tion tool for the Alpha architecture. ATOM allows for statically
instrumenting executables at the function, basic block and
instruction level. Executing the instrumented binary then yields
the desired program characteristics.

The CPI numbers used in this paper for the reference inputs
are taken from [23]; we simulated the other inputs ourselves
using the same simulator. We report CPI prediction errors for
predicting the CPI of an 8-issue as well as a 16-issue machine.
Table III summarizes the important processor model parame-
ters. The CPI numbers are obtained using SimpleScalar/Alpha
v3.0 [24].

VI. EVALUATION

In this section we first evaluate whether the assumption
made by PCA on the normality of the data set is valid.
We subsequently evaluate the ability of ICA to subset the
benchmark programs compared to those obtained by PCA. We
do this in a number of experiments. We first vary the subset
size looking for the optimal subset size. We subsequently
inspect the subset and the representative benchmark/input
pairs. We finally provide some results on simulation-centric
workload subsetting.

A. Normality of the data set

As mentioned before, PCA assumes that the data has a
Gaussian or normal distribution, whereas ICA does not make a
similar assumption. In order to verify whether or not our data
set has a Gaussian distribution we use two well known statis-
tical tests for normality, namely the Kolmogorov-Smirnov test
and the Shapiro-Wilks’ W test—in fact, the Shapiro-Wilks’
W test is the preferred test of normality. The null hypothesis

for these tests is that the data is Gaussian distributed. We use
STATISTICA [18] to apply these tests. The p-value reported
by these tests should be greater than 0.05 to accept the null
hypothesis and thus the assumption of normality with a 95%
confidence. Table IV shows the outcome of these tests. These
p-values are very low and thus provide evidence that assuming
that the data has a Gaussian distribution is invalid. These initial
results give us a first intuition why ICA might be a better and
more robust approach than PCA.

B. Comparing PCA vs. ICA for subsetting

In order to compare PCA and ICA for the purpose of
subsetting we provide the same data set as input to both PCA
and ICA; this is the data set as detailed in Section 3. PCA and
ICA then determine the important dimensions in this data set
and project the data set on the lower dimensional workload
space. These are the PCA-based and ICA-based workload
spaces. In this reduced workload space, we subsequently apply
K-means clustering in order to determine the groups of distinct
program behaviors. This is done for a range of k values; we
vary k from 5 up to 30 (recall the total number of program-
input pairs is 63). For each value of k we determine 25
clusterings; this is done by considering 25 random seeds for
choosing the initial (furthest-first) cluster centers. As discussed
in Section 4.3, we then retain the clustering with the maximum
BIC value. For this optimal clustering for a given value of
k we then compute the CPI prediction error of the selected
subset compared to t he complete set of benchmarks/inputs in
our data set. The CPI prediction error is computed as follows.
Our reference CPI is computed as the average CPI over all
the benchmarks tabulated in Table II. The estimated CPI for
the reduced workload is computed by taking a representative
per cluster being the benchmark-input pair that is closest
to the cluster centroid and computing the weighted average
CPI over all clusters with the weights being the number of
benchmark/input pairs in the cluster. The CPI prediction error
then is the percentage difference between the reference CPI
and the estimated CPI; the reported errors are absolute error
numbers.

Figures 1 and 2 show the CPI prediction error as a function
of the value of k (the subset size) chosen in the K-means
algorithm for PCA and ICA, respectively. Figure 3 shows
the delta CPI prediction error which is computed as the CPI
prediction error for PCA minus the CPI prediction error for
ICA—a positive delta CPI prediction error measures ICA is
better than PCA. Various curves are shown while varying the
dimensionality of the reduced workload space from 2 up to 6.
As expected, these graphs show that the CPI prediction error
generally decreases for larger subset sizes. These graphs also
clearly show that ICA outperforms PCA, especially for the 3-,
4- and 5-dimensional spaces. The CPI prediction error for ICA
is significantly lower across nearly all subset sizes. The error
is usually below 5% for both the 8- and 16-issue machine;
for PCA and the same dimensionality of the workload space
frequently exceeds the 5% and often goes up to 10%.

These graphs also show that neither of these two statistical



8-issue machine 16-issue machine
RUU/LSQ 128/64 256/128
Cache hierarchy 32KB L1 I/D-caches, 1MB L2, 16-entry store buffer 64KB L1 I/D-caches, 2MB L2, 32-entry store buffer
Latencies 1/12/100 cycles 2/16/100 cycles
Branch predictor Hybrid 2K tables, 7 cycle front-end pipeline Hybrid 8K tables, 10 cycle front-end pipeline
Processor width 8-wide 16-wide

TABLE III

PROCESSOR MODELS CONSIDERED IN THIS STUDY.
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Fig. 1. Evaluating the CPI prediction error for PCA as a function of subset size for the 8-issue machine on the left and the 16-issue machine on the right.
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Fig. 2. Evaluating the CPI prediction error for ICA as a function of subset size for the 8-issue machine on the left and the 16-issue machine on the right.
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Fig. 3. The CPI prediction error for PCA minus the CPI prediction error for ICA as a function of subset size for the 8-issue machine on the left and the
16-issue machine on the right.



analysis techniques are capable of determining an accurate
subset in a 2-dimensional space. Apparently, the 2-dimensional
workload space does not contain enough information from
the original space in order to discriminate distinct program
behaviors. The 6-dimensional workload space on the other
hand, contains too much information which results in higher
CPI prediction errors. We observed similar results for higher
dimensionality data—not shown here to preserve the read-
ability of the graphs. The reason is that some of the higher
dimensional axes inflate some of the rather unimportant
underlying program characteristics in the original data set.
This phenomenon, reduced clustering quality for a higher
dimensionality in the data, is well known as the curse of
dimensionality.

We thus conclude that a 3- to 5-dimensional space results
in the best subsets in conjunction with ICA. These 3, 4
and 5 dimensions collectively account for 74.1%, 83.1% and
89.2% of the total variation, respectively. Using 2 and 6
dimensions account for 60.4% and 93.1% of the total variation,
respectively. As such, our recommendation for applying this
methodology for other benchmark suites would be to select a
number of dimensions so that they account for 70% to 90% of
the total variation. Using fewer or more principal components
is likely to result in poorer performing subsets.

C. Optimal subset size

So far we considered a range of subset sizes and evaluated
the performance for each of them. However, in practice it is
undesirable to evaluate a range of subset sizes as done in
the previous section using CPI prediction error numbers—this
would mean we need to simulate all benchmarks and this is
exactly what we are trying to avoid in this paper. As such, it
would be desirable if we could find a well performing subset
without having to evaluate every subset size based on detailed
simulation results.

The data presented in Figures 1 and 2 provide evidence that
a well performing subset exists. For example, small subset
sizes are unlikely to perform well since they are unable
to cover the range of program behavior adequately. Larger
subsets on the other hand, are likely to be more accurate,
although more simulation time will be required since there
are more benchmarks in the subset.

In order to find a well performing benchmark subset in terms
of accuracy and simultion time required, we propose to use the
BIC criterion used during K-means clustering. During cluster
analysis we evaluated the BIC scores for all the subset sizes k
from 5 up to 20 (and for each k we evaluate 25 random seeds
for finding the initial clustering) and then picked the clustering
that results in the highest BIC score. Figure 4 shows evidence
that the BIC score indeed is a good metric for the subset
quality. This graph shows the subset CPI prediction error as a
function of the BIC score obtained through clustering for the
3-dimensional PCA and ICA spaces. We clearly observe that
higher BIC scores correspond to lower CPI prediction errors.

When picking the clustering with the optimal BIC score
over a range of k values, we obtain the results given in Table V.

This table shows the percentage CPI prediction error for the
8- and 16-issue machines for PCA and ICA. We observe that
ICA achieves better accuracy with smaller subsets for the 3-,
4- and 5-dimensional workload spaces. For example, in the
3-dimensional space, ICA yields a subset size of 11 with a
CPI prediction error in the range of 2% to 3%; PCA yields a
subset size of 18 with a CPI prediction error in the range 7%
to 8%.

So far we considered the optimal BIC score for determining
the optimal clustering, i.e., we considered a range of k values
and for each k we considered a number of random seeds;
the optimal clustering is then determined as the one with the
highest BIC score. In general, the clustering with the highest
BIC score is likely to be a clustering with a large number of
subsets. However, we could for example relax the constraint on
the optimal BIC score and pick the clustering that corresponds
to a given BIC percentage (e.g., 90%) of the observed BIC
range. Figure 5 quantifies the impact of the BIC percentage
on prediction accuracy and subset size. We conclude that as
the BIC percentage increases, the prediction error tends to
decrease while the subset size increases. It is also interesting
to note that a low-dimensional space seems to be less sensitive
to the BIC percentage compared to a high-dimensional space.
As a result, if one is interested in a rather small workload,
it is better to consider a low-dimensional space than a high-
dimensional space with a small BIC percentage. If on the other
hand, a fairly large reduced workload works fine for a given
purpose, a high-dimensional space and a high BIC percentage
would be recommended.

D. Benchmark clusters

Tables VI and VII show the clusters and the bench-
marks/inputs per cluster obtained from applying K-means clus-
tering in a 3-dimensional ICA space and PCA space, respec-
tively. The representatives per cluster are shown in bold. There
are 11 clusters in total and thus there are 11 representatives.
The representative is the one closest to the cluster centroid.
In case a cluster only contains two benchmarks/inputs, either
one can be chosen as the cluster representative.

We first analyze the clustering result based on ICA. The
results given in Table VI show that for many benchmarks,
several inputs result in similar program behavior. For example,
for twolf all inputs reside in one single cluster; for gzip many
of its inputs reside in a single cluster, although a few inputs,
especially program, seem to result in different behavior. This
clustering result also provides valuable information about the
representativeness of the MinneSPEC reduced inputs. For
example for vortex only the mdred input seems to result in
a program behavior that is similar to the reference inputs; the
smred and lgred inputs do not. Similarly, for gcc only the
lgred input results in program behavior similar to the reference
inputs; the other reduced inputs do not.

The results we obtain from PCA are quite different, see Ta-
ble VII. When comparing Table VII for PCA versus Table VI
for ICA there seems to be only two clusters that are identical,
namely clusters 10 and 11. There are a number of clusters
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Fig. 4. CPI prediction error for the 8-issue machine as a function of the BIC score. This is for the 3-dimensional PCA space on the left and the 3-dimensional
ICA space on the right.

PCA ICA
err. 8-issue err. 16-issue subset size err. 8-issue err. 16-issue subset size

2-dim 5.5% 4.7% 12 12.5% 14.9% 7
3-dim 7.6% 7.5% 18 3% 2% 11
4-dim 3.4% 3.9% 18 2.8% 1.5% 13
5-dim 7.8% 8.6% 19 1.8% 1.6% 20
6-dim 7.5% 7.6% 20 3.5% 3.1% 20

TABLE V

CPI PREDICTION ERROR AND SUBSET SIZE FOR OPTIMAL SUBSETS OBTAINED THROUGH PCA AND ICA.
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Fig. 5. CPI prediction error for the 8-issue machine (on the left) and subset size (on the right) as a function of the BIC percentage for the ICA space.

that show some similarities between PCA and ICA, namely
clusters 7 up to 9. The remaining clusters, 1 to 6, show large
disagreements between PCA and ICA.

An interesting note that could be made here is that ICA
seems to group the benchmarks more on a per-benchmark
basis, i.e., multiple inputs for the same benchmark seem to
be grouped in a single cluster. This is less the case for PCA;
several clusters contain inputs from multiple benchmarks.
This gives some additional intuitive support for the ICA
approach over the PCA approach, next to the higher accuracy
obtained for the ICA approach. Indeed, it is to be expected
intuitively that there is more similarity across inputs for a given
benchmark program than there is across different benchmark
programs. This is also shown in Figures 6 and 7 where the
3-dimensional workload space is shown for PCA and ICA,
respectively. In these graphs, the benchmark/input pairs are
shown in the workload space; the axes in the workload space
are the principal components. In the ICA space the points seem
to be grouped more on a per-benchmark basis; and this seems
to be more the case than in the PCA space. This explains

the clustering results of Tables VI and VII. Based on this
observation we can conclude that ICA is especially interesting
for selecting representative inputs from a set of potential inputs
for a given benchmark. Note that the simulation speedup
obtained through ICA comes from two sources: (i) cross-
program similarity—there are a few clusters that contain
multiple benchmarks, and (ii) more importantly, cross-input
similarity—ICA selects a reduced input as a representative
for the reference input.

E. Simulation-time centric workload composition

In the above clustering results, a representative is chosen as
the benchmark/input pair that is closest to the centroid for that
cluster. Simulating only these benchmark/input pairs instead
of the complete set of benchmarks results in a CPI prediction
error of 3% and 1.9% for the 8-issue and 16-machine, re-
spectively, when applying the clustering in the 3-dimensional
ICA space. The simulation speedup that is obtained by only
simulating these selected benchmarks is 12.2X compared to
simulating the complete set of benchmark/input pairs.



ID Size Clusters and their representatives
1 2 vortex-smred/lgred
2 2 parser-smred/mdred
3 5 gzip-program-smred/mdred/lgred/ref, gzip-graphic-smred
4 3 gcc-test/smred/mdred
5 6 gcc-ref-scilab/integrate/expr/200/166, gcc-train
6 5 twolf-train/smred/mdred/lgred/ref
7 17 gzip-train, gzip-test, gzip-smred-source/random/log, gzip-mdred/lgred/ref-source/random/log/graphic
8 5 parser-train/test/ref/lgred, bzip2-test
9 7 bzip2-lgred/ref-source/program/graphic, bzip2-train

10 4 vpr-train/ref/mdred/lgred
11 7 vpr-smred, vortex-train/test/mdred/ref-1/ref-2/ref-3

TABLE VI

CLUSTERING RESULT IN THE 3-DIM ICA SPACE; THE CPI PREDICTION ERROR IS 3% AND 2% FOR THE 8-ISSUE AND 16-ISSUE MACHINE, RESPECTIVELY.

ID Size Clusters and their representatives
1 2 twolf-train/ref
2 3 gzip-graphic-smred, gzip-program-ref/lgred
3 5 gcc-mdred/test/smred, vortex-smred/lgred
4 6 gzip-source-smred/mdred/lgred/ref, gzip-program-smred/mdred
5 2 gcc-ref-166/integrate
6 4 gcc-train, gcc-ref-scilab/expr/200
7 13 gzip-train/test, gzip-program-smred, gzip-random-mdred/lgred/ref, gzip-log-smred/mdred/lgred/ref, gzip-graphic-mdred/lgred/ref
8 7 parser-train/test/ref/smred/mdred/lgred, twolf-lgred
9 10 bzip2-lgred/ref-source/program/graphic, twolf-test/smred

10 4 vpr-train/ref/mdred/lgred
11 7 vpr-smred, vortex-train/test/mdred/ref-1/ref-2/ref-3

TABLE VII

CLUSTERING RESULT IN THE 3-DIM PCA SPACE; THE CPI PREDICTION ERROR IS 3.5% AND 3.7% FOR THE 8-ISSUE AND 16-ISSUE MACHINE,

RESPECTIVELY.
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Fig. 6. The 3-dimensional PCA space: second vs. first principal component on the left, and third vs. first principal component on the right.
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An alternative to selecting as the representative the one
benchmark closest to the centroid would be to select the
benchmark/input pair with the smallest dynamic instruction
count in that cluster. This might be an attractive alternative
when simulation speed is a primary concern. By doing so,
we achieve a simulation speed of 180.6X over simulating
all benchmark/input pairs, which is a substantial simulation
speedup over selecting a representative closest to the centroid.
Obviously, by doing so we trade simulation speed for accuracy.
In our case, the CPI prediction error now is 6.3% and 6.1%
for the 8-issue and 16-issue machine, respectively. In future
work it would be interesting to study how simulation speed and
accuracy can be traded-off more carefully so that a major part
of the 180.6X simulation speedup is preserved while reducing
the prediction error as much as possible.

VII. CONCLUSION

Composing a workload is crucial throughout the design cy-
cle of a microprocessor. The workload should be representative
of the target application domain and at the same time the
redundancy within the workload should be minimized. The
goal is to make an intelligent trade-off between workload
representativeness (and thus simulation accuracy) versus sim-
ulation speed.

Prior work on benchmark subsetting or workload composi-
tion typically measured a number of program characteristics
and subsequently performed Principal Components Analysis
(PCA) on these inputs in order to remove the correlation in
the data set. Cluster Analysis is then performed on this trans-
formed data set. This paper proposed Independent Components
Analysis (ICA) as a better alternative for selecting the key
dimensions in the input data than PCA. The primary differ-
ence between PCA and ICA is that PCA focuses on finding
uncorrelated axes in a multi-dimensional space whereas ICA
tries to find the (stronger in a statistical sense) independent
axes. Furthermore, we observe that the data is not Gaussian
across all 18 original dimensions. As a result, PCA is not
capable of capturing the true succinct representation. The ICA
algorithm is estimated by measuring the non-gaussianity of the
data, which is more appropriate for the measured data. These
differences makes ICA a more robust technique than PCA for
quantifying benchmark similarity.

Applying ICA for benchmark subsetting or workload com-
position leads to both smaller and more accurate subsets than
PCA. Our experimental results using SPEC CPU2000 have
shown that ICA is indeed capable of identifying reduced but
representative workloads. For example, in a 3-dimensional
space, ICA identifies a subset of 11 benchmark/input pairs to
be optimal whereas PCA finds a subset of 18 benchmark/input
pairs. Additionally, the CPI prediction error for ICA is in the
range of 2% to 3% whereas the error for PCA is in the range
of 7% to 8%.
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