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Abstract 
 

Recent research has proposed statistical simulation as a 

technique for fast performance evaluation of superscalar 

microprocessors. The idea in statistical simulation is to 

measure a program's key performance characteristics, 

generate a synthetic trace with these characteristics, and 

simulate the synthetic trace.  Due to the probabilistic nature 

of statistical simulation the performance estimate quickly 

converges to a solution, making it an attractive technique to 

efficiently cull a large microprocessor design space.  

In this paper, we evaluate the efficacy of statistical 

simulation in exploring the design space.  Specifically, we 

characterize the following aspects of statistical simulation: (i) 

fidelity of performance bottlenecks, with respect to cycle-

accurate simulation of the program, (ii) ability to track 

design changes, and (iii) trade-off between accuracy and 

complexity in statistical simulation models.  

In our characterization experiments, we use the Plackett 

& Burman (P&B) design to systematically stress statistical 

simulation by creating different performance bottlenecks. The 

key results from this paper are: (1) Synthetic traces stress at 

least the same 10 most significant processor performance 

bottlenecks as the original workload, (2) Statistical 

simulation can effectively track design changes to identify 

feasible design points in a large design space of aggressive 

microarchitectures, (3) Our evaluation of 4 statistical 

simulation models shows that although a very detailed model 

is needed to achieve a good absolute accuracy in 

performance estimation, a simple model is sufficient to 

achieve good relative accuracy, and (4) The P&B design 

technique can be  used to quickly identify areas to focus on to 

improve the accuracy of the statistical simulation model. 

 

1. Introduction 
 

In computer architecture, the simulation of benchmarks is 

a widely used technique for evaluating computer 

performance.  Computer architects and researchers use 

microprocessor models to accurately make performance 

projections during the pre-silicon phase of the chip design 

process, and also to quantitatively evaluate microprocessor 

innovations.  Unfortunately, when using a detailed cycle-

accurate performance model, the simulation time may span 

several weeks or months.  Further compounding this problem 

is the growing complexity of microarchitectures (i.e., 

decreasing simulation speed) and the increasing execution-

times of modern benchmarks.  Therefore, in order to meet the 

time-to-market requirements of a microprocessor, designers 

use different simulation models during the various stages of 

the design cycle. Although a detailed and highly accurate 

cycle-accurate simulator is necessary to evaluate specific 

design points later in the design cycle, earlier in the design 

cycle, a simulation technique that has a short development 

time and can quickly provide performance estimates with 

reasonable accuracy is desirable.   

Accordingly, computer architecture researchers have 

proposed several simulation and modeling techniques that 

reduce the time needed to generate quantitative performance 

estimates early in the design cycle.  These techniques include 

analytical modeling of microprocessors [24], statistical 

modeling of microprocessors [5], hybrid analytical and 

statistical modeling [12], statistical simulation [15], sampling 

[22] [25], and reducing the input set of the workload to be 

simulated [1]. 

The basic idea in statistical simulation [15] is to model a 

workload's important performance characteristics with a 

synthetic trace, and execute the trace in a statistical simulator 

to obtain a performance estimate.  Since the performance 

estimate quickly converges, the simulation speed of statistical 

simulation makes it an attractive technique to quickly explore 

a large design space. 

Although previous work has shown that statistical 

simulation has good absolute and relative accuracy and is a 

viable tool for design space exploration [11] [14] [23], 

researchers and architects are reluctant to use statistical 

simulation due to questions such as: (i) What is the absolute 

and relative accuracy across a diverse set of processor 



configurations?, (ii) Does the synthetic trace stress the same 

bottlenecks as the original program to the same degree?, (iii) 

Which processor and memory parameters can/cannot be sized 

using statistical simulation?, (iv) What is the trade-off 

between simulation accuracy and the complexity of various 

statistical simulation models?, and (v) Which workload 

characteristics are inadequately represented in the synthetic 

trace?     

The objective of this paper is to answer these questions 

and systematically analyze the efficacy of statistical 

simulation as a design space exploration tool.  Specifically, 

we make the following contributions in this paper: 

 

1) We use P&B design-based processor 

configurations as a stress test for statistical 

simulation, to evaluate the representativeness of 

the synthetic trace in terms of its performance 

bottlenecks. 

2) We characterize and examine the ability of 

statistical simulation to track microprocessor 

design changes across a diverse set of processor 

configurations. 

3) We compare the level of accuracy and 

complexity between statistical simulation models 

that span the range of models that have been 

proposed. 

4) We show how the P&B design technique can 

quickly and precisely identify areas to focus on 

to improve the accuracy of the statistical 

simulation model.  

 

The remainder of this paper is organized as follows: 

Section 2 describes related work, while Section 3 presents a 

brief overview of statistical simulation and the framework we 

have used in this study.  Section 4 describes the benchmarks 

used for the evaluation experiments. Section 5 presents the 

results from our evaluation of statistical simulation.  In 

Section 6 we show how the P&B design can be used to 

identify areas where one should focus on to improve the 

statistical simulation model, and Section 7 summarizes the 

conclusions and key results from our work.  
 

2. Related Work 
 

In this section, we discuss prior work on statistical 

simulation and the characterization techniques that have been 

used to evaluate simulation methodologies. 

Oskin et al. [16] proposed a hybrid processor simulator, 

HLS, which uses statistical and symbolic execution to 

evaluate design alternatives.  They generated a statistical 

profile from a normal distribution of workload characteristics, 

and simulated it on a generalized superscalar execution 

model.  Their results showed good correlations with the 

SimpleScalar and MIPS R10K processor models.  Bell et al. 

[18] improved the correlation of HLS by modeling the 

workload at the granularity of the basic block and modifying 

the generalized microprocessor simulation model to more 

closely reflect components in a modern superscalar processor.  

Eeckhout [13] et al. improved the accuracy of 

performance predictions in statistical simulation by measuring 

conditional distributions and incorporating memory 

dependencies using more detailed statistical profiles, and 

guaranteeing syntactical correctness of synthetic traces.  

Nussbaum and Smith [23] proposed correlating 

characteristics such as the instruction type, instruction 

dependencies, cache behavior, and branch behavior to the size 

of the basic block. They also compared the accuracy of 

several models for synthetic trace generation. In [14], 

Eeckhout et al. showed that the accuracy of statistical 

simulation can be substantially improved by creating an 

accurate statistical profile of a workload by using statistical 

flow graphs to capture the control flow behavior of a 

program.  Eeckhout [11] [14] et al. demonstrated that 

statistical simulation is capable of efficiently identifying a 

region of interest in the early stages of the microprocessor 

design cycle while considering performance and power 

consumption.  

Yi et al. [8] proposed to use the P&B design to choose 

processor parameters, to select a subset of benchmarks, and to 

analyze the effect of a processor enhancement.   Also, Yi et 

al. [9] used the P&B design as a characterization technique to 

compare simulation techniques.  

 

3. Statistical Simulation Framework 
 

In this paper, we developed an enhanced version of 

HLS++ [18] statistical simulation framework, called SS-

HLS++, as our statistical simulation environment.  It consists 

of three steps: 1) Profiling the benchmark program to measure 

a collection of its execution characteristics to create a 

statistical profile, 2) Using the statistical profile to generate a 

synthetic trace, and 3) Simulating the instructions in the 

synthetic trace on a trace-driven simulator to obtain a 

performance estimate.  Figure 1 illustrates these steps.  

In the first step, we characterize the benchmark by 

measuring its microarchitecture-independent and 

microarchitecture-dependent program characteristics.  The 

former is measured by functional simulation of the program; 

examples include: instruction mix, basic block size, and the 

data dependency among instructions.  Note that these 

characteristics are related only to the functional operation of 

the benchmark’s instructions and are independent of the 

microarchitecture on which the program executes.  On the 

other hand, the microarchitecture-dependent characteristics 

include statistics related to the locality and branch behavior of 

the program.  Typically, these statistics include L1 I-cache 

and D-cache miss-rates, L2 cache miss-rates, instruction and 

data TLB miss-rates, and branch prediction accuracy.  The 

complete set of microarchitecture-dependent and 

microarchitecture-independent characteristics form the 

statistical profile of the benchmark.  

 



 
 

Figure 1. SS-HLS++ statistical simulation framework 
 

After generating the statistical profile, the second step is 

to construct a synthetic trace with similar statistical properties 

as the original benchmark.  The synthetic trace consists of a 

number of instructions contained in basic blocks that are 

linked together into a control flow graph, similar to 

conventional code.  However, instead of actual arguments and 

opcodes, each instruction in the synthetic trace is composed 

of a set of statistical parameters, such as: instruction type 

(integer add, floating-point divide, load, etc.), ITLB/L1/L2 I-

cache hit probability, DTLB/L1/L2 D-cache hit probability 

(for load and store instructions), probability of branch 

misprediction (for branch instructions), and dynamic data 

dependency distance (to determine how far a consumer 

instruction is away from its producer).  The values of the 

statistical parameters describing each instruction are assigned 

by using a random number generator following the 

distributions of the various workload characteristics in the 

statistical profile of the benchmark.  

Finally, in the third step, the synthetic trace is executed 

on a trace-driven statistical simulator.  The statistical 

simulator is similar to a trace-driven simulator of real 

program traces, except that the statistical simulator 

probabilistically models cache misses and branch 

mispredictions.  During simulation, the misprediction 

probability that is assigned to the branch instruction is used to 

determine whether the branch is mispredicted, and if so, the 

pipeline is flushed when the mispredicted branch executes.      

Likewise, for every load instruction and instruction cache 

access, the simulator assigns a memory access time depending 

on whether it probabilistically hits or misses in the L1 and L2 

cache. 

Although, these statistical simulation models that have 

been recently proposed differ in the complexity of the model 

used to generate the synthetic trace, fundamentally, each 

model uses the same general framework described in Figure 

1.  They primarily differ in the granularity (basic block level, 

program level, etc.) at which they measure the workload 

characteristics in the statistical profile.  For this study, we 

implemented the following four statistical simulation models: 

 

1) HLS [16]: This is the simplest model where the 

workload characteristics (instruction mix, basic 

block size, cache miss-rates, branch 

misprediction rate, and dependency distances) 

are averaged over the entire execution of a 

program.  This model assumes that the workload 

characteristics are independent of each other and 

are normally distributed.  A synthetic trace of 

100 basic blocks is then generated from a normal 

distribution of these workload statistics and 

simulated on a general superscalar execution 

model until the results (Instructions-Per-Cycle) 

converge. Since the synthetic instructions are few 

in number and are probabilistically generated, the 

results converge very quickly. 

2) HLS + BBSize: We implemented a slightly 

modified version of the model proposed in [23].  

In this model, other than the basic block size, all 

workloads characteristics are averaged over the 

entire execution of the program.  However, for 

the basic block size, we maintain different 

distributions of the basic block size based on the 

history of recent branch outcomes. 

3) Zeroth Order Control Flow Graph (CFG, 

k=0) [14] [18]: In this modeling approach, we 

average the workload characteristics at the basic 

block granularity (instead of averaging them over 

the entire execution of the program).  While 

building the statistical profile, we create a control 

flow graph of the program.  This control flow 

graph stores the dynamic execution frequencies 

of each unique basic block along with the 
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transition probabilities to its successor basic 

blocks.  The workload characteristics (instruction 

mix, cache miss-rates etc.) are measured for each 

basic block.  Since the statistical profile is now at 

the basic block level, the size of the profile for 

this model is considerably larger than for the first 

two.  When generating a synthetic trace, we 

probabilistically navigate the control flow graph 

and generate synthetic instructions based on the 

workload characteristics that were measured for 

each basic block. 

4) First Order Control Flow Graph (CFG, k=1) 

[14]: This is the state-of-the art modeling 

approach [4].  This approach is the same as the 

one described in the Zeroth Order Control Flow 

Graph model described above, except that all 

workload characteristics are measured for each 

unique pair of predecessor and successor basic 

blocks in the control flow graph, instead of just 

for a unique single basic block.  Gathering 

workload characteristics at this granularity 

improves the modeling accuracy in the synthetic 

trace because the performance of a basic block 

depends on the context (predecessor basic block) 

in which it was executed. 

 

The First Order Control Flow Graph model is the state-

of-the-art statistical simulation model, and we therefore use it 

in all the experiments in this paper.  In Section 5.3, we 

compare the accuracy of the other three models described 

above against the accuracy of the First Order Control Flow 

Graph model. 

 

Table 1. SPEC CPU 2000 benchmarks and input sets used 
in this paper 

 

Benchmark Input Set Type 

175.vpr-Place ref.net Integer 

175.vpr-Route ref.arch.in Floating-Point 

176.gcc 166.i Integer 

179.art -startx 110 Floating-Point 

181.mcf ref.in Integer 

183.equake ref.in Floating-Point 

253.perlbmk diffmail Integer 

255.vortex lendian1 Integer 

256.bzip2 ref.source Integer 

 

4. Benchmarks 
 

We used 9 benchmark programs and their reference 

input sets from the SPEC CPU 2000 benchmark suite in this 

paper.  All benchmark programs were compiled using 

SimpleScalar’s version of the gcc compiler, version 2.6.3, at 

optimization level –O3.  Table 1 lists the programs, their 

input sets, and benchmark type.  In order to compare the 

statistical simulation results for the configurations used in 

P&B design to the corresponding results from a cycle-

accurate simulator, we had to run 44 cycle-accurate 

simulations of reference input sets for every benchmark 

program.  To reduce this simulation time, we simulated the 

first one billion instructions only for each benchmark.   

 

5. Evaluating Statistical Simulation 
 

In this section we characterize and evaluate the accuracy 

of statistical simulation.  The objective of our characterization 

is to analyze the efficacy of statistical simulation as a design 

space exploration tool by stressing it using a number of 

aggressive configurations.  Using aggressive configurations 

affords us an opportunity to evaluate the accuracy of 

statistical simulation by systematically exposing a diverse set 

of processor performance bottlenecks.       
Our evaluation consists of three parts: In Section 5.1 we 

evaluate the ability of statistical simulation to identify 

important processor performance bottlenecks.  Specifically, 

we use a P&B design that uses a number of diverse 

configurations to evaluate the representativeness of the 

synthetic trace in terms of its performance bottlenecks.  In 

Section 5.2, we measure the relative accuracy of statistical 

simulation by examining its ability to accurately track design 

changes across 44 aggressive processor configurations. 

Finally, in Section 5.3, we measure the absolute and relative 

accuracy of the four previously described statistical 

simulation models, and discuss the trade-offs between their 

complexity and level of accuracy.  

 

5.1. Identifying Important Processor Bottlenecks 
 

Due to their inherent characteristics, different benchmark 

programs stress different processor performance bottlenecks 

to different degrees.  Since architects use benchmark 

programs to make quantitative evaluations of various points 

in the design space and propose processor enhancements to 

relieve specific performance bottlenecks, the synthetic trace 

used in statistical simulation should have the same key 

microprocessor performance bottlenecks that are present 

when simulating the benchmark on a cycle-accurate simulator.  

We quantify the representativeness of the synthetic trace by 

quantifying the difference between the bottlenecks stressed by 

the original workload and the synthetic trace.    

For architects, the P&B design [8] can determine which 

processor and memory parameters have the largest effect on 

performance (cycles-per-instruction) i.e., identify the biggest 

performance bottlenecks. The P&B design is a very 

economical experimental design technique that varies N 

parameters simultaneously over approximately (N + 1) 

simulations [20].  Based on the results of the P&B design, we 

assign a rank for each performance bottleneck based on its 

P&B magnitude.  The P&B magnitude represents the 

significance of that bottleneck, or more specifically, the effect 

that the bottleneck has on the variability in the output value, 



e.g., cycles-per-instruction (CPI).  The bottleneck that has the 

largest impact on the CPI, i.e., the microarchitectural 

parameter with the highest P&B magnitude, is the largest 

performance bottleneck in the processor core and memory 

subsystem.  Based on their significance, we assign a rank to 

each bottleneck, i.e., the most significant bottleneck has a 

rank of 1, while the least significant has a rank of N. 
In this study, we evaluated 43 parameters in an out-of-

order superscalar microprocessor related to the L1 I-cache, 

L1 D-cache, L2 cache, instruction and data TLB, branch 

predictor configuration, integer execution units, and floating 

point execution units.  To determine the P&B magnitude, and 

subsequently the rank, of each bottleneck, we use 44 very 

different processor configurations.  The configurations 

represent the “envelope of the hypercube” of processor 

configurations and provide a stress test for statistical 

simulation by systematically exposing diverse performance 

bottlenecks.  To characterize our bottlenecks, the input 

parameter values were set to low and high values that were 

similar to those found in [8].  To quantify the 

representativeness of the synthetic trace, we first vectorize the 

ranks (from statistical simulation and cycle-accurate 

simulation) and then compute the Euclidean distance between 

the pair of vectors.  Smaller Euclidean distances indicate that 

the ranks from statistical simulation are very similar to those 

obtained by simulating the program with a cycle-accurate 

simulator.  When the vectors of ranks are identical (i.e., the 

significance of each bottleneck is the same for both statistical 

and cycle-accurate simulation), the Euclidean distance is 0.  

When the ranks are completely “out-of-phase” (i.e. <1, 2, 3 

… 41, 42, 43> versus <43, 42, 41 … 3, 2, 1>), the Euclidean 

distance is at a maximum of 162.75.  We normalize the 

Euclidean distance between each pair of vectors to this 

maximum, and then scale the distance to a 0 to 100 range. 

Since the ranks for all bottlenecks are included in the 

Euclidean distance, insignificant bottlenecks may deceptively 

inflate the Euclidean distance. Additionally, one has to be 

careful when interpreting the results based only on the ranks 

of the parameters.  It is possible that while the Euclidean 

distance is fairly high, their significance may be, in fact, quite 

similar.  In such cases, seemingly large Euclidean distances 

are the result of quantization error due to using ranks.  To 

avoid such a pitfall, we also separately present the normalized 

Euclidean distance for the most significant 3, 5, 10, and 20 

parameters, in addition to all 43. 

Figure 2 shows the normalized Euclidean distance for the 

9 benchmarks.  The results in this figure show that statistical 

simulation can identify the 10 most important bottlenecks for 

all programs with good accuracy (normalized Euclidean 

distance less than or equal to 15).  For all 43 bottlenecks, the 

accuracy is very high for 179.art, good for 176.gcc and 

183.equake, moderate for 175.vpr-Place, 175.vpr-Route, and 

253.perlbmk, and poor for 181.mcf, 255.vortex, and 

256.bzip2. 

In order to understand the reasons for the difference in 

level of accuracy of statistical simulation for different 

programs, we analyzed the absolute values of the P&B 

magnitude.  For 179.art and 183.equake, the absolute values 

of  P&B magnitudes for the most important and the least 

important parameters ranges from 138 (L2 cache size) to 1 

(the number of Return Address Stack entries) and 80 (L1 I-

cache size) to 0.4 (I-TLB associativity), respectively.  Note 

that larger differences in the P&B magnitudes imply larger 

performance impacts for that bottleneck.  Therefore, in 

benchmarks such as 179.art and 183.equake, the importance 

of the most and least significant parameter is very distinct. 

However, for 256.bzip2, the difference in the significance of 

the bottlenecks is less distinct since the range of magnitudes 

is only 16.  Since the importance of the most and least 

significant bottlenecks is not substantially different, 

incorrectly estimating the importance of bottlenecks that have 

relatively little impact on the CPI does not imply any 

additional inaccuracy on the part of statistical simulation.  
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Figure 2. Normalized Euclidean distance (0 to 100) between 
the ranks of processor and memory performance bottlenecks 
estimated by statistical simulation and cycle-accurate 
simulation.  Smaller Euclidean distances imply higher 
representativeness of synthetic trace. 

 

In any case, the primary goal of early design space 

studies is to identify a range of feasible design values for the 

most important performance bottlenecks.   Since we observe 

that statistical simulation can do so, we conclude that 

statistical simulation is useful during early design space 

exploration.  For programs such as 176.gcc, 179.art, and 

183.equake, since the synthetic trace is very representative for 

all 43 bottlenecks stressed by the original benchmark 

program, statistical simulation may be a valuable tool even 

beyond the earliest stages of the design space exploration 

studies.   

 

5.2. Tracking Design Changes 
 

During early design space exploration, the ability of a 

simulation technique, e.g., statistical simulation, to accurately 

predict a performance trend, is a very important feature.  Or, 

in other words, the relative accuracy of statistical simulation 

is more important than its absolute accuracy.  If a simulation



    

 

Figure 3. Actual and estimated speedup across 43 processor configurations for 9 SPEC CPU2000 benchmarks. 

 
technique exhibits good relative accuracy, it means that the 

technique will accurately track performance changes, and 

therefore can help to identify the interesting design points that 

need to be further analyzed using detailed simulation.   

To evaluate the relative accuracy, we used the 44 P&B 

configurations that represent a wide range of processor 

configurations.  It is important to note that while these 

processor configurations are not realistic, they enable us to 

evaluate whether statistical simulation is accurate enough to 

track the processor’s performance across a wide range of 

configurations.  The approach that we used to characterize the 

relative accuracy of statistical simulation was to examine the 

correlation between the estimated and actual ranking of the 

configurations.  In particular, we measured the speedup in 

CPI obtained from statistical simulation and cycle-accurate 

simulation for 43 configurations relative to the 44
th

 

configuration, and ranked the 43 processor configurations in 

descending order of their speedups.  Figure 3 shows the 

individual speedups for each configuration for all benchmark 

programs.  We observe that in general, across all programs, 

statistical simulation tracks both local and global speedup 

minima/maxima extremely well.  

We now use Spearman’s rank correlation coefficient to 

measure the relation between the ranks estimated by cycle-

accurate and statistical simulation.  The Spearman’s rank 

correlation coefficient is calculated as: 

 

RS = 1 – 6 ∑ di
2
/ (n

3
-n)……………………………(i) 

where di is the difference between ranks estimated for i
th

 

configuration and n is the total number of configurations.  

The value of RS ranges from -1 to 1.  A value of 1 for RS 

indicates that statistical simulation correctly estimated the 

ranks for all configurations (highest relative accuracy), and a 

value of -1 means that the ranks estimated by statistical 

simulation are perfectly opposite to the ones estimated from 

cycle-accurate simulation (lowest relative accuracy).  
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Figure 4. Relative Accuracy in terms of Spearman’s 
correlation coefficient between actual and estimated 
speedups across 43 processor configurations 

 
Figure 4 shows that the relative accuracy is very good for 

all programs (> 0.95).  This suggests that for all programs, the 
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ranks for the 43 configurations estimated by statistical 

simulation are very similar to the ranks estimated from cycle-

accurate simulation.   

From these results, we conclude that statistical simulation 

can be effectively used to narrow down a large design space 

to a few feasible design points.  Subsequently, the architect 

can use a more accurate simulation technique to further study 

these feasible design points. 

 

5.3. Comparing the Accuracy of Statistical 

Simulation Models 
 

Researchers have proposed a number of different 

statistical simulation models that mainly differ in the 

complexity of the model used to generate the synthetic trace.   

Fundamentally, each model uses the same general framework 

described in Figure 1 and is a refinement of the basic 

approach to statistical simulation.     

Intuitively, increasing the degree-of-detail in the model 

should improve the representativeness of the synthetic trace 

and thus its absolute accuracy.  However, what is not clear is 

how the additional modeling affects the relative accuracy, and 

whether there is a good trade-off between the model’s 

complexity and its associated absolute and relative accuracy.  

In this section, we compare the following 4 modeling 

approaches, described in Section 3, namely: HLS, 

HLS+BBSize, Zeroth Order Control Flow Graph (CFG, 

k=0), and First Order Control Flow Graph (CFG, k=1). 

We use the 44 P&B configurations to evaluate and 

compare the absolute error, relative accuracy, and the ability 

to identify important processor bottlenecks of the four 

models.  The absolute error (AE) is computed as the 

percentage error in CPI between cycle-accurate simulation 

(CS) and statistical simulation (SS), that is: 

 

AE = (| CPICS – CPISS|) * 100 / CPICS…………………...(ii) 

 

To calculate the relative accuracy, we use the RS measure 

of relative accuracy as described in equation (i).  To measure 

the fidelity of the processor bottlenecks, we compute the 

Normalized Euclidean. Distance between the ranks of the 

bottlenecks from cycle-accurate simulation and statistical 

simulation for the most significant 5, 20, and all 43 

bottlenecks.  

Figure 5 shows that increasing the level-of-detail in the 

statistical simulation model improves the absolute accuracy 

for all benchmarks.  For the simplest model, HLS, the AE is 

36.8%; for the First Order Control Flow Graph (CFG, k=1), 

the most sophisticated model, the AE is 16.7%.  Therefore, if 

the primary goal is high absolute accuracy, a computer 

architect should use as detailed a statistical simulation model 

as possible to generate the synthetic traces.  It is very 

important to note that the average error of 16.7% for the state-

of-the-art statistical simulation model is for the 44 aggressive, 

unrealistic configurations. (Note that from our experiments 

with using balanced (realistic) configurations, the average 

absolute error is 11% for the First Order Control Flow Graph 

(CFG, k=1) statistical simulation model, which is very similar 

to the level of accuracy in previously published work [4].)  
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Figure 5. Comparison between absolute accuracy of 4 
statistical simulation models on the 44 extreme processor 
configurations 
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Figure 6. Relative accuracy based on the ability to rank 43 
configurations in order of their speedup 
 

Figure 6 shows the relative accuracy of the 4 simulation 

models based on the ability of statistical simulation to rank 43 

diverse processor configurations in order of their speedups 

(RS). The figure shows that although there is a large 

improvement in relative accuracy between the HLS and 

HLS+BBSize, additional modeling yields only slight 

improvements in the relative accuracy.  

Figure 7 shows the results of processor bottleneck 

characterization for the four statistical simulation models.  

The accuracy of the HLS model is good enough to identify 

only top 3 performance bottlenecks for all programs except 

181.art and 256.bzip2.  By increasing the complexity of the 

HLS+BBSize model allows statistical simulation to correctly 

identify the order of the Top 3, 10, 20, and all 43 bottlenecks.  

The two statistical simulation models, Zeroth Order Control 

Flow Graph (CFG, k=0) and First Order Control Flow 

Graph (CFG, k=1), only marginally improves the accuracy to 

of statistical simulation to identify the performance 

bottlenecks. 
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(a) Top 5 bottlenecks 
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(b) Top 20 bottlenecks 
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(c) Top 43 bottlenecks 

 

Figure 7. Bottleneck characterization for 4 statistical 
simulation models.  

 

In summary, from these results, we conclude that if 

absolute accuracy is the primary goal, then the computer 

architect should use the most detailed state-of-the art 

statistical simulation model, Control Flow Graph (k=1).  

However, we observe that an increase in the absolute 

accuracy of statistical simulation does not result in a 

commensurate increase in its relative accuracy.  Interestingly, 

a simple statistical model such as HLS+BBSize has the ability 

to yield very good relative accuracy, although the absolute 

accuracy is lower.  Therefore, one key result from this paper 

is that simple statistical simulations models have a good 

relative accuracy, which makes them an effective tool to make 

design decisions early in the design cycle when the time and 

resources for simulator development are very limited. 

 

6. Challenges and Opportunities for Improving 

Statistical Simulation 
 

If the synthetic trace models all of the key workload 

characteristics that affect a benchmark’s performance, the 

ranks of the bottlenecks from statistical simulation should be 

very similar to those found using cycle-accurate simulation, 

such that the Euclidean distance is close to 0.  Therefore, by 

analyzing how well the statistical simulation technique 

identifies the processor bottlenecks, one can determine which 

bottlenecks are well represented in the synthetic trace and 

also identify which bottlenecks need additional modeling 

effort. 

 In order to determine the overall importance of a 

bottleneck across all benchmarks, we first find the sum of the 

rank of each individual parameter for all the benchmark 

programs.  The parameter with the smallest sum of ranks is, 

on average, the most significant bottleneck that affects 

performance across all programs.  By using this method, we 

can rank each parameter based on its average significance 

across all the benchmarks.  For each bottleneck, we calculate 

the difference between its ranks obtained from cycle-accurate 

simulation and statistical simulation. The maximum 

difference is 42, so we normalize the distance to obtain a 

normalized difference between ranks, and then scale it 

between 0 and 100. 

Table 2 shows the rank of each bottleneck across the 9 

benchmark programs, and the normalized difference between 

ranks shows how well that bottleneck is modeled in the 

synthetic trace. The table has been sorted in the ascending 

order of the parameters that are well represented in the 

synthetic trace i.e., the number of FP ALUs is the most well-

modeled parameter and I-TLB size is the least.  

From Table 2, we conclude that the synthetic trace does 

not model the effect of the following microarchitectural 

parameters accurately: the I-TLB size, the L1 D-Cache size, 

the latency of integer multiply execution units, the L2 Cache 

Block Size, and the number of BTB entries.  It is interesting 

that out of the top 10 least well-modeled bottlenecks, 8 are 

related to the data locality and control flow predictability of 

the program.  This suggests that in order to improve the 

representativeness of the synthetic trace, and thus the 

accuracy of statistical simulation, researchers must expend 

effort to improve the modeling of data locality and control 

flow predictability in the synthetic trace. 

The key advantage of using the P&B design to analyze 

the strengths and weaknesses of statistical simulation is that it 

separates the program characteristics that are not modeled 

very accurately, but which have a large impact on 

performance (such as branch predictor type, number of LSQ 

entries, etc.) from the parameters that are also not accurately 

modeled, but have very little performance impact.  This 

allows us to efficiently allocate our efforts to only improve 



modeling deficiencies that actually make a significant impact 

on the accuracy of statistical simulation. 

 

Table 2.  Significance (Rank) of a processor bottleneck 
(Parameter) and how well (Normalized difference between 
ranks) the bottleneck is modeled in the synthetic trace.  A 
smaller distance indicates that the parameter is well modeled. 

 

RANK PARAMETER 

NORMALIZED 

DIFFERENCE  

BETWEEN 

RANKS (0-100) 

37 I-TLB Size 44.2 

20 L1 D-Cache Size 39.5 

26 Int Multiply Latency 30.2 

27 L2 Cache Block Size 30.2 

39 BTB Entries 27.9 

41 Number of Integer Mult/Div Units 25.6 

22 I-TLB Page Size 23.3 

29 L1 D-Cache Block Size 20.9 

9 LSQ Entries 18.6 

12 BTB Associativity 18.6 

10 Branch Predictor Type 14.0 

16 Memory Ports 14.0 

34 FP Square Root Latency 14.0 

36 FP Divide Latency 14.0 

42 Instruction Fetch Queue Entries 14.0 

4 Int Divide Latency 11.6 

6 Number of RUU Entries 11.6 

13 Branch Misprediction Penalty 11.6 

17 I-TLB Latency 11.6 

25 I-TLB Associativity 11.6 

8 FP ALU Latencies 9.3 

10 Memory Latency First 9.3 

14 Memory Bandwidth 9.3 

19 Int ALUs 9.3 

30 L2 Cache Associativity 9.3 

38 Number of FP Mult/Div 9.3 

4 L1 I-Cache Latency 7.0 

7 L1 I-Cache Block Size 7.0 

40 L1 I-Cache Associativity 7.0 

3 L1 I-Cache Size 4.7 

2 L2 Cache Latency 2.3 

30 L1 D-Cache Associativity 2.3 

1 L2 Cache Size 2.3 

15 FP Multiply Latency 0.0 

21 D-TLB Associativity 0.0 

22 D-TLB Size 0.0 

24 Speculative Branch Update 0.0 

28 Integer ALU Latencies 0.0 

33 Return Address Stack Entries 0.0 

35 L1 D-Cache Latency 0.0 

43 Number of FP ALUs 0.0 

7. Conclusions 
 

Since detailed cycle-accurate simulation models require 

long simulation times, computer architects have proposed 

statistical simulation as a time-efficient alternative for 

performing early design space exploration studies.  But the 

concern for many architects is that statistical simulation may 

not perform well for processor configurations that are 

drastically different than the ones that have been used in 

previous evaluations, i.e., it is suited only for evaluating 

incremental changes in processor architectures.  The objective 

of this paper was to evaluate the efficacy of statistical 

simulation as a design space exploration tool, in wake of 

these issues and concerns to using statistical simulation.   

In this paper, we use the Plackett & Burman (P&B) 

design to measure the representativeness of the synthetic 

trace.  The configurations used in P&B design provide a 

systematic way to evaluate the accuracy of statistical 

simulation by exposing various performance bottlenecks.  

The key results from this paper are: 

 

1) At the very least, synthetic traces stress the same 

10 most significant processor performance 

bottlenecks as the original workload.  Since the 

primary goal of early design space studies is to 

identify the most significant performance 

bottlenecks, we conclude that statistical 

simulation is indeed a very useful tool.  

2) Statistical simulation has good relative accuracy 

and can effectively track design changes to 

identify feasible design points in a large design 

space of aggressive microarchitectures. 

3) Our evaluation of four statistical simulation 

models shows that although a very detailed 

model is needed to achieve a good absolute 

accuracy in performance estimation, a simple 

model is sufficient to achieve good relative 

accuracy.  This is very attractive early in the 

design cycle when time and resources for 

developing the simulation infrastructure are 

limited.  

4) Computer architects can use the P&B design to 

quickly identify areas to focus on to improve the 

accuracy of the statistical simulation model.  We 

applied this technique to the state-of-the-art 

statistical simulation model and observed that 

dataflow and control flow predictability must be 

modeled more accurately in the synthetic trace to 

further improve the accuracy of statistical 

simulation. 

 

From these results, we conclude that statistical 

simulation, with its ability to identify key performance 

bottlenecks and accurately track performance trends using a 

simple statistical simulation model, is a valuable tool for 

making early microprocessor design decisions.  In addition, 



we feel that the methodology used in this paper also provides 

a framework for researchers to further evaluate and improve 

the accuracy of statistical simulation.  
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