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Abstract—Due to cost, time, and flexibility constraints, computer architects use simulators to explore the design space when

developing new processors and to evaluate the performance of potential enhancements. However, despite this dependence on

simulators, statistically rigorous simulation methodologies are typically not used in computer architecture research. A formal

methodology can provide a sound basis for drawing conclusions gathered from simulation results by adding statistical rigor and,

consequently, can increase the architect’s confidence in the simulation results. This paper demonstrates the application of a rigorous

statistical technique to the setup and analysis phases of the simulation process. Specifically, we apply a Plackett and Burman design

to: 1) identify key processor parameters, 2) classify benchmarks based on how they affect the processor, and 3) analyze the effect of

processor enhancements. Our results showed that, out of the 41 user-configurable parameters in SimpleScalar, only 10 had a

significant effect on the execution time. Of those 10, the number of reorder buffer entries and the L2 cache latency were the two most

significant ones, by far. Our results also showed that Instruction Precomputation—a value reuse-like microarchitectural technique—

primarily improves the processor’s performance by relieving integer ALU contention.

Index Terms—Performance analysis and design aids, measurement techniques, simulation output analysis.

�

1 INTRODUCTION

THE most important tool in processor design and
computer architecture research is the simulator. Using

a simulator reduces the cost and time of a project by
allowing the architect to quickly evaluate the performance
of different processor configurations instead of fabricating a
new processor for each one, a process that takes years and is
extraordinarily expensive. Additionally, a simulator is
much more flexible than fabricating the processor since it
can accurately determine the expected performance of a
processor enhancement without having to undergo all the
necessary circuit-level design steps. Consequently, without
simulators, designing processors would either be too
expensive or would yield very poor designs.

Computer architects also use simulators to guide design
decisions, determine what points to explore in the design
space, and to quantify the efficacy of a processor enhance-
ment. Consequently, since misleading simulation results
can severely affect the final design of the processor or lead
to erroneous conclusions, the accuracy of the simulator’s
results is extremely important. Therefore, to minimize the
amount of error in the simulation results, computer
architects need to do two things. First, they should try to
minimize the amount of error inherent to the simulator (as
compared to the silicon version of the processor that the
simulator models). Second, they should try to reduce the
amount of “error” that they introduce when running

simulations. An architect may introduce additional error
into the simulation results by choosing a poor set of
parameter values or benchmarks, thus altering the proces-
sor’s apparent performance. While current research also
focuses on decreasing the processor’s power consumption
and improving the processor’s fault tolerance, for brevity,
the remainder of this paper assumes that the architect is
trying only to improve the processor’s performance.
However, the techniques that are described in this paper
are equally applicable to power consumption reduction and
improving the processor’s reliability.

In spite of this dependence on simulators, relatively little
research has focused on decreasing the amount of error in
simulation results by improving the accuracy of simulators
or by improving simulation methodology. In fact, current
simulation methodology is, at best, ad hoc. Therefore, to
decrease the amount of error in the simulation results and
also to improve the overall quality of simulation methodol-
ogy, this paper advocates using rigorous, statistically-based
simulation methodology.

While the downside of using such a methodology is that
it may require some additional simulations, it also has the
following advantages:

1. It decreases the number of errors that are present in
the simulation process and helps the computer
architect detect errors more quickly. Errors include,
but are not limited to, simulator modeling errors,
user implementation errors, and simulation setup
errors [2], [4], [6].

2. It gives more insight into what is occurring inside
the processor or the actual effect of a processor
enhancement.

3. It gives objective confidence to the results and
provides statistical support regarding the observed
behavior.
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More specifically, this paper improves the simulation
methodology used by computer architects by recommend-
ing specific procedures on how to: 1) choose the parameter
values, 2) select a subset of benchmarks, and 3) analyze the
effect that an enhancement has on the processor. The first
two recommendations target the simulation setup phase of
the simulation process, while the last recommendation
targets the analysis phase. To illustrate the efficacy of the
last recommendation, this paper analyzes the effect that
two processor enhancements, Instruction Precomputation
[21] and the Simplification and Elimination of Trivial
Computations [22], have on the processor.

The contributions of this paper are as follows:

1. This paper motivates the need for methodological
improvement in computer architecture research and
design.

2. This paper makes specific recommendations on how
to improve simulation methodology. In particular,
the recommendations include how to:

a. choose the parameter values,
b. select a subset of benchmarks, and
c. analyze the effect that an enhancement has on

the processor.

Collectively, these recommendations can improve
the simulation methodology, decrease the total
number of simulations, quickly determine the
processor’s performance bottlenecks, and provide
analytical insights into the impact of processor
enhancements.

The remainder of this paper is organized as follows:
Section 2 describes the statistical Plackett and Burman
design. Sections 3 and 4 describe the experimental setup
and the results, respectively, while Section 5 discusses some
related work. Section 6 concludes.

2 THE PLACKETT AND BURMAN DESIGN

To determine the effect that a parameter has on the
processor’s performance, in this paper, we used a Plackett
and Burman (PB) design [14]. While we could have used one
of several other statistical techniques, we chose the PB design
because it required only about N simulations (where N is
the number of parameters) to produce the desired level of
information. The other approaches that we considered using
were the “one-at-a-time” technique and the ANOVA
technique [11]. However, these two techniques did not
produce the desired level of information (one-at-a-time) or
required too many simulations (2N ) simulations (ANOVA).

The PB design is one well-known type of a fractional
multifactorial design. The base PB design requires X sim-
ulations, where X is the next multiple of four greater than
N . For example, if N ¼ 3, then X ¼ 4; if N ¼ 16, then
X ¼ 20. An improvement on the base PB design is the PB
design with foldover [12]. This doubles the number of
required simulations to 2 �X.

A PB design with foldover can accurately quantify the
effect that single parameters and two-parameter interac-
tions have on the output value. But, it cannot quantify the
effect of interactions that are composed of three or more

parameters. While this may appear to be a major problem
for computer architects, it is not. In general, if an interaction
has a significant effect, it is likely that that interaction is
significant because one of its parameters is a single
parameter with a significant effect. The results from [23]
show that, for a small number of parameters (10 total), the
most significant interactions are the results of significant
single parameters. Therefore, in computer architecture, it is
likely that dominant interactions are the result of one or
more dominant parameters. These conclusions are an
example of what the statistical literature calls the “sparsity
of effects.” This phenomenon holds that, typically, only a
small proportion of the parameters have a large effect on
the output value and an even smaller proportion of the
possible interactions are relevant. Exploiting this phenom-
enon, the PB design reduces the number of configurations
that need to be simulated from 2N by studying only enough
configurations to quantify all effects and provide an
indication of where there may be interactions.

2.1 Mechanics of the Plackett and Burman Design

For each test case in the PB design, the value of each
parameter is given by the PB design matrix. For most values
of X, the PB design matrix is simple to construct. Each row
of the design matrix specifies if the parameter is set to its
high or low value for that configuration. For a PB design
with foldover, there are 2 �X rows, or configurations; only
X configurations are needed when using a PB design
without foldover. Each column specifies the values that a
parameter is set to for each configuration. With or without
foldover, there are always X � 1 columns in the design
matrix. When there are more columns than parameters (i.e.,
N < X � 1), then the extra columns are simply “dummy
parameters” and have no effect on the simulation results.

For most values of X, the first row of the design matrix is
given in [14]. The value of each entry in the design matrix is
either “þ1” or “�1,” where þ1 corresponds to the para-
meter’s high value and �1 corresponds to its low value. The
next X � 2 rows are formed by performing a circular right
shift on the preceding row. Finally, without foldover, the last
row of the design matrix (row X) is a row of minus ones,
which corresponds to the base case. The gray-shaded
portion of Table 1 illustrates the construction of the
PB design matrix for X ¼ 8, i.e., suitable for N ¼ 4; 5; 6; 7.

When using foldover,X additional rows are added to the
matrix. The signs of the values in each of these additional
rows are the opposite of the corresponding entries in the
original matrix; the corresponding row isX rows above that
row. Consequently, the last row, Row 2 �X, is a row of plus
ones. Table 1 shows the complete PB design matrix with
foldover. Note that rows 9 to 16 specifically show the
additional foldover rows.

The high value ðþ1Þ for a parameter represents a value
that is slightly higher than the range of normal values for
that parameter, while the low value ð�1Þ represents a value
that is slightly lower than the range of normal values. It is
important to note that the high and low values are not
restricted to numerical values only. For example, in the case
of branch prediction, the high and low “values” could be
perfect and two-level branch prediction, respectively. It is
also important to note that choosing high and low values
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that yield too large a range can artificially inflate the
parameter’s apparent effect. On the other hand, too small a
range of values for a parameter means that that parameter
will have very little or no effect on the output. However,
having too large a range is better than having too small a
range because that ensures that that parameter will have an
effect on the output value. In any case, the computer
architect should carefully choose the high and low values
for each parameter that are just outside of the “normal”
range of values.

After determining the configurations and performing the
simulations, the effect of each parameter is computed by
multiplying the parameter’s corresponding þ1 or �1 for
that configuration by the output value (e.g., execution time)
for that configuration and summing the resulting products
across all configurations. For example, given the execution
times in the rightmost column in Table 1, the effect of
parameter A is computed as follows:

EffectA ¼ ð1 � 9Þ þ ð�1 � 11Þ þ ð�1 � 20Þ þ . . .þ ð�1 � 33Þ
þ ð�1 � 6Þ þ ð1 � 4Þ ¼ �34:

By performing the same computation for each para-
meter, the results in Table 1 show that the parameters that
have the most effect on the execution time are B, D, and F, in
descending order of their overall impact on the execution
time. Only the magnitude of the effect is important in
determining relative importance; the sign of the effect is
essentially meaningless.

The effect that a parameter has represents how much of
the total variation in the output value is attributable to that
parameter. Therefore, a parameter that has a large effect on
the execution time accounts for a significant amount of
variability in the execution time. For those parameters, since
they have a large effect on the execution time (or else they
would not cause large variations in the execution time),
they represent significant performance bottlenecks (since
changing the parameter from its low value to its high value
results in large changes in the execution time).

After computing the magnitude of the effect for each
parameter, the parameters can be ranked based on their

magnitudes (1 = most important, X � 1 = least important).
Since the execution time, in cycles, for the same processor
configuration, can be very different across benchmarks, the
magnitudes of the effects reflect those differences. Conse-
quently, ranking the parameters by their magnitudes allows
for comparisons between benchmarks, which would not be
possible due to the large differences in the execution times.

Obviously, mapping the PB magnitudes to ranks has
advantages and disadvantages. The first advantage is that it
prevents the most significant parameter from dominating
the results. For example, assume that the effects of all
parameters were normalized to the largest effect. If the
magnitude of that effect is large enough, then the remaining
parameters would essentially have zero relative effect
although their absolute effect may be nonnegligible. By
using ranks, less significant parameters still have an effect.
The second advantage of using ranks instead of using a
scaled version of the effects is that it is simple to use and
provides a common set of values for all benchmarks.

The obvious disadvantage of ranks is that they may
distort the results due to “quantization” error. For example,
assume that the PB magnitudes of the 10 most significant
parameters are all virtually equal. By using ranks, instead of
normalizing all effects to the magnitude of the most
dominant parameter, there is a difference of nine in the
ranks of the most significant parameter and the 10th most,
despite their magnitudes being virtually identical.

Therefore, due to their inherent advantages and dis-
advantages, one needs to use ranks judiciously. (In this
paper, we checked a few parameters and benchmarks to
determine the effect that ranking had. Our checks showed
that the ranks did not seem to significantly affect our
results.)

Collectively, the ranks of all parameters form a vector of
ranks, one for each benchmark. These vectors are used as
the basis for improving the simulation methodology. In
particular, the three subsections of Section 4 explain how
these vectors can be used to improve the way in which
parameter values are chosen, benchmarks are selected, and
the effect of an enhancement is analyzed.

2.2 Guidelines for Plackett and Burman Design
Usage for Computer Architecture Research

As described in the previous section, the PB design is able
to accurately quantify the effects of all single parameters
and, with foldover, selected (i.e., two-factor) interactions.
Without foldover, the effects of all interactions—ranging
from two-factor to N-factor—are randomly mixed into the
effects of the individual, single parameters. The PB design
with foldover allows the user to quantify the effects of the
two-factor interactions and filters out the effects of the two-
factor interactions from the effects of the single parameters.
Consequently, the first key point is that the PB design is best
suited for experimental designs where the effects of
interactions are relatively low (i.e., most of the variability
in the output value is due to single parameters) and/or
primarily due to two-factor interactions. The PB design may
produce misleading results when interactions composed of
three or more parameters are the most significant effects,
especially if each of those parameters is not a significant
single parameter. Fortunately, in most cases, there is
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sparsity of effects such that single parameters and two-
factor interactions will be the most significant parameters
and interactions; the results in this paper confirm that that
is the case for computer architecture.

It is important to note that using two values only for each
parameter, i.e., high and low values, only tracks the net
effect that a parameter has. Suppose that the execution time
decreases as the parameter’s value is increased from its low
value to a middle value, but increases back to the original
execution time as the parameter’s value changes from its
middle value to its high value. In this situation, this
parameter would appear to have no effect, but, in actuality,
it has no net effect since the execution time increased after
the parameter was set to its high value. An example of this
kind of parameter could be the number of branch history
table (BHT) entries. When there are very few entries, many
branches may map to the same BHT entries and destruc-
tively interfere with each other. On the flip side, if there are
too many entries, it may take too many branches to
adequately train the BHT or eliminate the possibility of
constructive interference. However, an intermediate num-
ber of entries may be the perfect balance between con-
structive interference and long training times, which would
then result in the lowest execution time.

There are two potential solutions to minimize this
problem. First, the architect can either use three values
(low, medium, and high) instead of just two. Obviously,
using three values would allow the architect to track the
intermediate values that may reveal effects that are not
linearly increasing. A second solution, instead of increasing
the number of simulations by 50 percent, is to rely on the
architect’s intuition to realize if the effects of some
parameters are likely to be monotonic or not.

It is important to reiterate that, when choosing high and
low parameter values, the most important thing is to choose
a pair of values that spans a large enough range of values to
ensure that the parameter has an effect on the output value.
In other words, it is preferable to choose too large a range
rather than one that is too small. However, the competing
factor is that too large a value will cause that parameter to
have a disproportionately large effect on the execution time.
Therefore, when choosing high and low parameter values, it
is important for architects to use their intuition about that
parameter’s effect on the output value to select the values.

For some parameters, the high and low values may not
necessarily be constant, i.e., the high value may not always
be the value for that parameter that yields the best output
value (e.g., lowest execution time). For example, one such
parameter may be the cache replacement policy where LRU
may be the high “value” for some benchmarks, but the low
“value” for others, while a random replacement policy may
be the high “value” for other benchmarks and the low
“value” for others. Fortunately, the PB design is not affected
by these kinds of parameters since each parameter is set to
its high and low values for half of the configurations.

Finally, when foldover is not used, instead of simulating
what corresponds to the top half of Table 1, the bottom half
of the table can be substituted in its place to decrease the
simulation time. From a statistical point of view, the bottom
half of the PB design matrix is the logical equivalent of the

top half. Therefore, substituting one half of the table for the
other produces the same results. However, the benefit of
using the bottom half of the table is that, in the last
configuration, each parameter value set to its high value,
which results in a lower cycle count than when each
parameter is set to its low value, and, presumably, a lower
simulation time.

3 SIMULATOR, BENCHMARKS, AND PROCESSOR

PARAMETER VALUES

In the remainder of this paper, we illustrate the efficacy of
the PB design in improving simulation methodology. The
base simulator, sim-outorder, is from the SimpleScalar
tool suite [3] and models a superscalar processor. We
modified sim-outorder to include user configurable
instruction latencies and throughputs. Table 2 lists the
benchmarks and input sets that were used in this paper.

As described in Section 2, the parameter values should
be chosen to be slightly too low and too high—with respect
to the normal range—to allow the PB design to more
accurately determine the effect of each parameter. As a
result, the final values that we chose for each parameter are
not values that would actually be present in commercial
processors nor are they values that should be used in other
simulations. We based our parameter values on those found
in several commercial processors, including the Alpha
21164 [1] and 21264 [8]; the UltraSparc I [19], II [13], and
III [7]; the HP PA-8000 [10]; the PowerPC 604 [18]; and the
MIPS R10000 [20]. To fill in the gaps left by these papers,
[15], [16], and several Web searches were also used as
references. Tables 3, 4, and 5 show the final values for each
of the relevant parameters in the processor core, the
functional units, and the memory hierarchy, respectively.

A few parameters in these three tables are shaded in

gray. For these parameters, the high and low values cannot

be chosen completely independently of the other para-

meters due to the mechanics of the PB design. The problem

occurs when one of those parameters is set to its high value

while the parameter that it is related to is set to its low
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value. This combination of values leads to a situation that

either does not make sense or would not actually occur in a

real processor. For example, if the number of LSQ entries

was chosen independently of the number of ROB entries,

then some of the configurations could have a 64-entry LSQ

and an eight-entry ROB. Since the total number of in-flight

instructions cannot exceed the number of ROB entries, the

maximum number of filled LSQ entries will never exceed

eight, which is just like setting the high value of the number

of LSQ entries to eight. In this case, the effect of the number

of LSQ entries is artificially constrained by the number of

ROB entries. On the other hand, we did not base the cache

access latency on the cache size, associativity, and block size

for two key reasons. First, since there are two values for

each parameter, there are a total of eight cache configura-

tions and, since there is both a high and a low value for the

cache access latency for each cache configuration, we could

potentially have 16 different cache access latencies. For

certain cache configurations, some of the “low” values may

be lower than some of the “high” values (remember that the

high value for cache access latency is a smaller number than

the low value). In these cases, the “high” and “low” values

are “flipped” around, which makes it impossible for the

PB design to accurately determine the effect of the cache

access latency. Second, unlike the ROB/LSQ situation,

where the low value of one parameter effectively changes

the high value of the other parameter, none of these three

parameters has that same effect. In conclusion, the rule-of-

thumb that we used to decide if one parameter depended

on another was if the value of one parameter constrained a

value of the other parameter, as was the case for the number

of ROB and LSQ entries.
All parameter values were based on a four-way issue

processor. While the issue width is a very important

parameter, we fixed the issue width at four for two reasons.

First, we fixed it to avoid having a set of high and low

values for each issue width since almost all of the

parameters are related to the issue width. Having two sets

of high and low values could dramatically affect the results.

Second, we fixed issue width to eliminate the guesswork

needed to determine the normal range of parameter values

for a higher issue width processor since there is very little

documentation available for processors with an issue width

greater than four.
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4 PB DESIGN RESULTS FOR THE SIMULATION

SETUP AND ANALYSIS

In computer architecture research, the simulation process is
the sequence of steps that architects must perform to run
their simulations and to analyze their simulation results.
Most academic computer architects start with a publicly
available simulator, such as SimpleScalar, and then add
their own code to the simulator to model their enhance-
ment. This paper divides the simulation process into
six major steps. They are:

1. simulator implementation and validation,
2. processor enhancement implementation and verifi-

cation,
3. processor and memory hierarchy parameter value

selection,
4. benchmark and input set selection,
5. simulation, and
6. analysis of an enhancement’s effect.

This paper focuses on improving the simulation meth-
odology of the third step, processor parameter selection, the
fourth step, benchmark selection, and the last step, the
analysis of an enhancement’s effect. This paper excludes the
first step (simulator implementation and validation) for
two reasons. First, since most computer architects do not
implement their own simulator, but rather use publicly
available simulators as their base simulator, focusing on this
step benefits only a small number of computer architects.
Second, as is described in Section 5, there have been a few
papers that have focused on improving the accuracy of
simulators. For similar reasons, this paper does not focus on
the second (processor enhancement implementation and
verification) and fifth (simulation) steps.

4.1 Processor Parameter Selection

Choosing the processor parameter values for simulation is
the third step of the simulation process. Choosing a “good”
set of values is very important since improperly choosing
the value of even a single parameter can significantly affect
the simulated speedup of a processor enhancement. For
example, simply increasing the reorder buffer (ROB) size
can change the apparent speedup of value reuse [23] from
approximately 20 percent to approximately 30 percent.

However, choosing a good set of parameters is extremely
difficult since many of the important parameters may
interact, thereby compounding the error of selecting a
single poor value. Determining which parameters interact
requires performing a sensitivity analysis on all of the
parameters simultaneously or choosing a select few para-
meters for detailed study. The problem with the former
approach is that simulating all possible combinations is
virtually impossible due to time limitations. The problem
with the latter approach is that, in studying only a few
parameters, the other parameters have to have constant
values. Therefore, if one of the constant parameters
significantly interacts with one of the free parameters, then
the results of the sensitivity analysis will be distorted.

A related problem is efficient design space exploration.
Due to the large number of variables (processor, memory
hierarchy, and system parameters; compiler options; etc.),

the number of points in the design space is extremely large,
which makes it virtually impossible to simulate all of them.
However, reducing the number of points in the design
space to a tractable level is difficult since it is difficult to
separate the less significant parameters from ones that are
slightly more significant.

A PB design solves both of these problems by quantify-
ing the effect of all single parameters and two-factor
interactions. To determine which single parameters are
the most significant ones, for each parameter, the ranks of
that parameter across all benchmarks are first averaged
together and then the averages are sorted in ascending
order. Consequently, the parameter with the lowest average
rank corresponds to, across all benchmarks, the parameter
that has the most effect on the variation in the execution
time. Then, by examining the average rank for each
parameter, the computer architect can determine which
parameters have the most effect on the execution time and
can then carefully choose values for those parameters.

In the same way that mapping the PB magnitudes to
ranks has its advantages and disadvantages, averaging the
ranks across benchmarks has its own advantages and
disadvantages. Averaging has the twin advantages of
simplicity and equal benchmark weighting. However, one
of its disadvantages is that it assigns the same weight to
each benchmark, where, in some cases, some benchmarks
should have a larger weight (e.g., benchmarks that are more
frequently run). In this paper, we opt for simplicity to more
clearly focus on the technique rather than the efficacy of
specific mechanics. Nevertheless, it is important to realize
that averaging the ranks across benchmarks may not be
appropriate for each architect’s situation.

More formally, this paper recommends using the
following steps as a guide when choosing processor and
memory hierarchy parameter values:

1. Determine the most significant processor parameters
using a PB design.

a. Choose high and low values for each of the
parameters.

b. Run and analyze the PB simulations to deter-
mine the critical parameters.

2. Iteratively perform sensitivity analyses for each
critical parameter using the ANOVA design.

3. Choose final values for the significant parameters
based on the results of the sensitivity analyses.

4. Choose the final values for the remaining parameters
based on commercial processor values or some other
appropriate source.

Of these four steps, the most important step is the first
step. In this step, the computer architect uses a PB design to
determine the most significant parameters. The second step
is optional, depending on the results of the first step. If the
first step shows that there are relatively few significant
parameters, then second step is not necessary. Finally, in the
third and fourth steps, the computer architect chooses the
final values for all parameters based on the results of the
first two steps and based on commercial parameter values.
When choosing the values for each parameter, it is
important to choose values that produce a balanced
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processor configuration. In other words, the architect
should choose parameter values that are large enough to
minimize the effects of the biggest performance bottlenecks,
while not selecting values that are too large, i.e., that will be
underutilized, dissipate a disproportionate amount of
power compared to its performance benefit, and consume
an unwarranted amount of area. Therefore, while the PB
design can help an architect identify the most sensitive
parameters, the architect needs to carefully choose the final
parameter values to ensure that the processor is not
unbalanced.

When using this approach to reduce the design space, it
is only necessary to do the first step—determine the most
significant parameters—since this step reduces the max-
imum number of parameters in the design space to only the
most significant ones. Then, the architect only needs to
focus on points in the design space that are touched by
these parameters.

Table 6 shows the results of a PB design with foldover
(X ¼ 44) for a superscalar processor with the parameter
values shown in Tables 3, 4, and 5. This table shows
several key results. First, based on the average ranks, there
are 10 significant parameters. This conclusion is drawn by
examining the large difference between the average rank of
the 10th parameter, LSQ size, which has an average rank

of 12.6, and the average rank of the 11th parameter,

Speculative Branch Update, which has an average rank of

18.2. Furthermore, while the ranks of the top 10 parameters

for each benchmark are completely different, two para-

meters, the number of ROB Entries and L2 Cache Latency

are significant across all of the benchmarks since those

two parameters invariably have one of the lowest ranks for

every benchmark. Stating it differently, this means that the

number of ROB Entries and the L2 Cache Latency are the
two biggest performance bottlenecks in the processor

across all of the benchmarks tested in this paper. There-

fore, of all the user-configurable simulator parameters, the

architect needs to be especially careful when choosing

parameter values for the number of ROB entries and the

L2 Cache Latency.

Although the number of ROB entries and the L2 Cache

Latency are the two parameters that have the two lowest

average ranks, the L1 I-Cache Size is the most significant

performance bottleneck (i.e., has a rank of 1) in six of the

13 benchmarks. By contrast, the number of ROB entries is the

most significant performance bottleneck for only four of the

13 benchmarks and the L2 Cache is never the most

significant performance bottleneck. However, the L1 I-Cache

Size is not one of the five most significant performance
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bottlenecks because its rank is 12 or greater for five bench-

marks. As a result, when averaging the ranks, the average

rank of the L1 I-Cache Size places it as the sixth most

significant performance bottleneck. (To determine if aver-

aging the ranksundervalues the significanceof theL1 I-Cache

Size as a performance bottleneck, we averaged the results in

three other ways: computing the weighted average of the

cycles, a nonweightedaverageof the cycles, andanaverage of

the IPCs. The results show that, for all three averaging

approaches, the L1 I-Cache Size is never the most significant

performance bottleneck, but rather the fifth, fifth, and second

most significant performance bottleneck, respectively.) On

the other hand, with the exception of two benchmarks, the

number of ROB entries and the L2 Cache Latency are always

one of the four most significant performance bottlenecks for

every benchmark. These results clearly show that the

average rank may not reflect the significance of a parameter

for groups of individual benchmarks (e.g., L1 I-Cache Size)

and is best used only to gain a big-picture view of the results.
Second, the effect that each benchmark has on the

processor can be clearly seen. The “effect” that a benchmark
has on the processor can be defined as the performance
bottlenecks that are present in the processor when running
that program. For example, for a compute intensive bench-
mark, the number of functional units will probably be a
performance bottleneck for that processor. On the other
hand, for a memory intensive benchmark, the sizes of the L1
D-Cache and the L2 Cache may be the performance
bottlenecks.

In this case, for mesa, since the ranks for the L1 I-Cache
size, associativity, and block size are lower than or similar
to the ranks for the L1 D-Cache size, associativity, and block
size, respectively, the performance of the instruction cache
is more of a limiting factor than the performance of the data
cache. The miss rates for the L1 I-Cache and the L1 D-Cache
validate this result. When using a 32-byte cache block, the
miss rates of the L1 I-Cache are similar to or higher than the
miss rates of the L1 D-Cache. Therefore, it is not surprising
to see that the L1 I-Cache parameters are generally more
significant.

Third, several parameters have surprisingly low ranks in
some benchmarks. For example, the FP square root latency
in art has a rank of five. Since art does not have a significant
number of FP square root instructions, its rank does not
appear to be consistent with its intuitive significance.
However, what the rank does not show is that the
magnitude of the effect for this parameter is much smaller
than magnitudes of the effects for the four most significant
parameters. In other words, while ranking the parameters
for each benchmark provides a basis for comparison across
benchmarks, it cannot be used as the sole arbiter in
concluding the significance of a parameter’s impact since
the rank is not proportional to the magnitude of the effect.
For several benchmarks, the L1 I-Cache latency has a very
high rank. One reason that the L1 I-Cache latency may be
relatively insignificant is because its high and low values
span a range of values that may potentially be too small.

Finally, Table 6 shows that the L1 D-Cache parameters
(size, associativity, block size, and latency) are not as
significant as one would expect. The lowest ranks for the

L1 D-Cache size, associativity, block size, and latency are
seven (twolf), 13 (gzip), nine (art), and five (vortex),
respectively. Given the amount of effort that the computer
architecture community has put into improving memory
performance, one would expect that the L1 D-Cache
parameters would have much lower ranks. Therefore, the
key question is: Why are the L1 D-Cache parameters not
more significant?

One reason that the L1 D-Cache parameters are not more
significant is that the memory hierarchy of sim-outorder
tends to overestimate the memory performance since it does
not model memory contention. In addition, sim-outorder
has a shorter-than-normal pipeline, does not partition the
execution core, does not replay traps, and has fewer
pipeline flushes. The net effect of these factors is that the
average IPC “error” of SimpleScalar for eight selected SPEC
2000 benchmarks is 36.7 percent [4]. Another reason is that
the reduced input sets [9] that were used in this paper do
not realistically stress the memory hierarchy. Given the
unrealistic memory behavior in SimpleScalar and the
smaller-than-expected memory footprint, it is not too
surprising to see that the L1 D-Cache parameters are not
as significant as expected.

4.2 Benchmark Selection

Just as a poorly chosen set of parameter values can
drastically affect the performance results, a poorly chosen
set of benchmarks may not accurately depict the true
performance of the processor or an enhancement. Impro-
perly choosing benchmarks and input sets may affect the
results, the conclusions that are drawn, or both. If a
computer architect chooses a set of benchmarks that does
not accurately reflect the applications that the proposed
processor enhancement targets, then the apparent speedup
due to that enhancement may be misleading enough to
affect the conclusion that the architect forms. Although the
results of those simulations are not wrong, they could still
be misleading.

However, howdoes the architect know if two benchmarks
are similar or dissimilar? One option is to rely on existing
classifications, such as integer versus floating-point, compu-
tationally-bound versus memory-bound, or by application
type. The problem with this approach is that two bench-
marks that are classified differently may have the same
characteristics, such as having the same performance bottle-
necks in the processor. On the other hand, two benchmarks
that are classified to be in the same group may have very
dissimilar characteristics. Therefore, simply relying on
existing classifications without verifying the similarity of
benchmarks within and across classification groupsmay still
result in a poor choice of benchmarks.

The solution proposed in this paper approaches this
problem from a different direction. Instead of classifying
benchmarks based on their intrinsic characteristics, bench-
marks are classified based on what effect they have on the
processor. Different benchmarks have different sets of
performance bottlenecks. Therefore, two benchmarks that
have a similar effect on the processor have most of the same
performance bottlenecks and, consequently, should be
grouped together. Since the results of the PB design show
which parameters are the most important (or, in other
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words, are the biggest performance bottlenecks), comparing
the PB design results of two benchmarks indicates how
similar the two benchmarks are, in terms of their perfor-
mance bottlenecks. Benchmarks that are similar are put into
the same group. After grouping all the benchmarks into
different groups, selecting the final set of the benchmarks is
easy since the architect only needs to select either
one benchmark from each group or all benchmarks from a
single group.

Starting with the results of the PB design, the first step in
determining whether two benchmarks have similar effects
on the processor is to calculate the Euclidean distance
between all possible pair-wise combinations of benchmarks.
Since the PB design results for each benchmark is simply a
vector of ranks, where each value in the vector corresponds
to the rank for that parameter, the formula for computing
the Euclidean distance is simply:

Distance ¼ ½ðx1 � y1Þ2 þ ðx2 � y2Þ2 þ . . .þ ðxn�1 � yn�1Þ2

þ ðxn � ynÞ2�1=2:

In this formula, n is the number of parameters while
X ¼ ½x1; x2; . . . ; xn�1; xn� and Y ¼ ½y1; y2; . . . ; yn�1; yn� are the
vector of ranks that represent benchmarks X and Y ,
respectively.

For example, the Euclidean distance between gzip and
vpr-Place, using the ranks from Table 6, is as follows:

Distance ¼ ½ð1� 4Þ2 þ ð4� 2Þ2 þ . . .þ ð28� 33Þ2

þ ð19� 37Þ2�1=2 ¼ ½8; 058�1=2 ¼ 89:8:

In the second step, the benchmarks were clustered
together based on their Euclidean distances. And, in the
third step, the final clustering tree is plotted. Fig. 1 shows
the output of the cluster analysis for the ranks given in
Table 6.

In Fig. 1, the benchmarks are arranged along the x-axis
while the y-axis represents the level of dissimilarity—the
level of dissimilarity is simply the Euclidean distance—
between any two benchmarks (or group of benchmarks).
Whenever two benchmarks are connected by a horizontal

line, that means at that level of dissimilarity and higher,

those two benchmarks are considered to be similar. For

example, since vpr-Place and twolf are connected together at
a dissimilarity of 35.19, for dissimilarities (or Euclidean

distances) less than 35.19, those two benchmarks are

categorized into separate groups. However, when the level
of dissimilarity exceeds 35.19, they are categorized into the

same group. All benchmarks in the same group are

considered to be similar.
The first step in selecting a final group of benchmarks to

simulate using the dendrogram is to draw a horizontal line

at a dissimilarity of 0. Then, the horizontal line should be

moved up until the number of vertical lines that it intersects
matches the maximum number of benchmarks that can be

simulated. The number of intersecting vertical lines

represents the number of groups that the benchmarks have
been classified into. At that level of dissimilarity, all

benchmarks within the same group are considered to be

similar, while any benchmark in another group is con-
sidered to be dissimilar. The final step in the benchmark

selection process is to select one benchmark from each

group to form the final set of benchmarks.
The middle column of Table 7 shows the benchmarks in

each of the eight groups, while the rightmost column shows

the benchmark that could be selected from each group to

form the final set. The final set of benchmarks consists of
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Fig. 1. Cluster analysis results (i.e., dendrogram) for the large MinneSPEC input set.

TABLE 7
Example of Benchmark Selection,

Choosing Eight Benchmarks from 13



five integer benchmarks (gzip, vpr-Place, vpr-Route, gcc, and
mcf) and three floating-point benchmarks (art, equake, and
ammp). In addition, two of the benchmarks (art and mcf)
have very high cache miss rates (over 20 percent for a 32 KB,
two-way associative cache) while the other six have
comparatively low miss rates (less than 5 percent for a
32 KB, 2-way cache). Therefore, the final set of benchmarks
consists of benchmarks that would come from different
groups when categorizing benchmarks using existing
methods (integer versus floating-point, computation-bound
versus memory-bound, etc.).

Finally, it is important to note that it may be useful to
consider other factors when selecting a benchmark from
each group. In this example, one reason to choose gzip
instead of mesa from Group I is because gzip has a much
lower instruction count although those two benchmarks are
statistically similar. Similarly, one reason to choose vpr-
Route over parser and bzip2 from Group III is to match the
choice of vpr-Place from Group II.

It is important to note that the classification in Table 7
represents only one possible outcome of classifying these
benchmarks. It is also important to realize that key metrics,
such as IPC and miss rates, could be different within a
group. However, since the purpose of this section was to
introduce an alternative method of classifying benchmarks
(based on their effect on the processor), it is left to the user
to group the benchmarks and to decide which benchmarks
to select based on this method of classification and,
potentially, other metrics. Finally, it is important to realize
that the classification of the benchmarks in Fig. 1 and
Table 7 are predicated on the efficacy of the mapping of PB
magnitudes to ranks. For this paper, we used ranks only
because it offered a simple and clean way of normalizing
the results of all benchmarks to a common numerical basis.
However, due to possible mapping errors for some
benchmarks, the classification results may change. Never-
theless, ranks are an appropriate choice for this paper since
it allows us to focus on this specific approach to bench-
mark classification, namely, classification by performance
bottlenecks.

4.3 Analysis of Processor Enhancements

In many computer architecture papers, analyzing the effect
of a processor enhancement involves examining only
individual metrics (e.g., speedup, miss rate, etc.). While
these metrics may provide some insight into the effect of the
enhancement on key hardware structures, identifying all of
the important metrics and trying to piece them back
together to form the big picture as to how the enhancement
actually affects the processor is extremely difficult, if not
impossible. Additionally, while these approaches give the
architect a high-level picture of the enhancement’s effect, it
shows only the net effect.

For example, suppose that aprocessor enhancement yields
a speedup of 25 percent. Also, suppose that two parameters
(A and B) are the primary performance bottlenecks in the
processor. One case is that the enhancement relieves both
bottlenecks by about the same amount. Therefore, the
bottlenecks due to both parameters still exist, albeit to a
lesser degree.However, another case is that the enhancement
relieves the bottleneck due to parameter A, but exacerbates

the bottleneck due to parameter B. While both cases could
result in the same speedup, the two cases arrive at that
speedup by different ways. Therefore, understanding what
effect the enhancement has on the performance bottlenecks is
a crucial step in trying to improve the performance of the
enhancement.High-levelmetrics such as speedup only show
what the enhancement did, but not how it got there. Since the
“how” affects the “what,” it is important to determine the
effect that an enhancement has to a greater depth than just
with high-level metrics.

Therefore, as a complement to the high-level metrics, this
paper proposes using the PB design to quantify the effect of
an enhancement. The results of a PB design can be used to
measure the significance of all parameters with and without
the enhancement. Since the significance of a parameter is an
indication of how much of a performance bottleneck that
parameter is, a change in the significance of a parameter
means that that parameter is more or less of a performance
bottleneck with that enhancement.

To determine what effect an enhancement has on each
parameter, we compute the difference in the average
ranks of each parameter. Consequently, any parameter
that experiences a large change in its average rank after
an enhancement is applied has become more of a
bottleneck (Before�After > 0) or less of a bottleneck
(Before�After < 0).

To illustrate how a PB design can be used in this way,
this technique was used to analyze the effects that
instruction precomputation and simplifying and eliminat-
ing trivial computations had on the processor. Table 8
presents the PB design results for instruction precomputa-
tion, while Table 9 does the same for simplifying and
eliminating trivial computations.

4.3.1 Instruction Precomputation

Instruction precomputation [21] is similar to value reuse
[17], with the key difference that instruction precomputa-
tion uses profiling to statically identify the highest
frequency redundant computations instead of identifying
them at runtime. Also, in instruction precomputation, the
redundant computations are loaded into the precomputa-
tion table (PT) before the program begins and are never
updated. By contrast, value reuse continually updates the
value reuse table.

Table 8 shows the results for instruction precomputation
when using two different input sets for profiling and for
execution and while using a 128-entry PT. Table 8
represents the “after” case, while Table 6 represents the
“before” case, that is, the unenhanced processor.

Comparing these two tables yields two conclusions
about the effect that instruction precomputation has on
the processor. First of all, the same parameters that were
significant for the base processor are also significant for the
processor with instruction precomputation. While instruc-
tion precomputation changes the relative ordering of the
significant parameters, with respect to each other, it does
not change which parameters have the greatest significance.

Second, of the significant parameters, the parameter that
has the biggest change in its overall effect (defined as the
biggest change in its average rank) is the number of integer
ALUs; instruction precomputation changes its average rank
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from 9.1 in the base processor to 10.5 with instruction

precomputation. This result is intuitively reasonable since

most of the instructions that instruction precomputation

eliminates would have executed on the integer ALUs.

Therefore, using instruction precomputation decreases the

impact of the number of integer ALUs on the processor’s

performance.
Although these results show that instruction precompu-

tation improves the processor’s performance by reducing

functional unit contention, it also improves the processor’s

performance by decreasing the execution latency of

redundant computations. However, since the base Simple-

Scalar processor has a short pipeline, this latter effect

appears to be relatively small.

4.3.2 The Simplification and Elimination of Trivial

Computations

A trivial computation is one where the output is zero, one,

0xffffffff, or a shifted version of one of the inputs. To exploit

these trivial computations, hardware is added to the

processor to first check the opcode and input operands to

determine whether each instruction is trivial and, if so,

whether it can be simplified or eliminated. When the trivial

computation can be simplified, the instruction is converted

to another type of instruction that produces the same result,

but with a lower execution latency. When the trivial
computation can be eliminated, the trivial computation
hardware “computes” its result and removes the instruction
from the pipeline.

Table 9 shows the results for simplifying and eliminating
trivial computations [22] and it represents the “after” case,
while Table 6 represents the “before” case.

The results in Table 9 show that simplifying and
eliminating trivial computations has a similar effect on all
processor parameters. That is, the performance bottlenecks
in the base processor do not get substantially better or
worse when hardware to exploit trivial computations is
added to the processor. There are two reasons to support
this conclusion. First, the order of the 10 most significant
parameters is the same as the base processor. Since their
average ranks are nearly identical, with respect to the base
case, this enhancement has a very similar effect on the most
significant processor parameters.

Second, there is relatively little difference between the
average ranks for the other parameters. The maximum
difference between the average ranks for a parameter with
and without adding the trivial computation exploitation
hardware is 1.3. Although this difference rivals the change
in the average rank for the number of integer ALUs when
instruction precomputation is added to the base processor,
this difference is less meaningful because it is a smaller

1370 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 11, NOVEMBER 2005

TABLE 8
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percentage of the average rank for that parameter. In other
words, since those parameters are insignificant to begin
with, large changes in their average rank do not imply that
the enhancement has a large effect on that parameter.

4.3.3 Limitations of the Plackett and Burman Design for

Enhancement Analysis

While this approach has many strengths—including com-
paring how all performance bottlenecks migrate due to the
enhancement—it has at least two important limitations.
First, if the enhancement directly changes the value of the
input parameters, then this approach cannot be used since
the high and low values for the parameter have effectively
changed, which then makes it impossible to accurately
calculate the PB magnitude for that parameter.

Second, this analysis cannot determine the performance
bottlenecks—and, hence, their subsequent migration—that
are not input parameters. An example of a noninput
parameter might be the processor’s ISA. While a poor ISA
could lead to significant performance degradation, it is very
difficult to make the ISA into an input parameter since it
could require changes to the architecture as well, which
then introduces additional parameters. In any case, since
the PB design only measures that effect that each parameter
has on the variability in the output value, the only
performance bottlenecks are due to input parameters,

which means that the migration of noninput parameter

performance bottlenecks cannot be examined by this

analysis.
Finally, as described in the previous sections, using ranks

and averaging ranks trades simplicity for the potential of

quantization error. Nevertheless, using and averaging ranks

is acceptable in this paper since it allows us to focus on this

specific performance analysis technique.

4.3.4 Summary

In conclusion, this method of analyzing simulation results

has a few advantages over commonly used approaches that

only look at a single metric. First, the exact effect that an

enhancement has on the parameters can be determined.

This information is especially useful in finding parameters

that would seem to be unaffected by an enhancement, but

are, in actuality, significantly affected. This information also

can point the user to areas in the processor that may require

a more detailed analysis. Second, the user can determine the

most significant parameters of the enhancement and how

its ranks compare to the ranks of the parameters. This

comparison allows the user to make design decisions as to

how to maximize the performance while minimizing the

enhancement’s cost. Finally, using this method gives the

analysis a statistically solid foundation that improves the
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overall quality of the analysis, in addition to improving the
confidence in the final results and conclusions.

5 RELATED WORK

The relatedwork in this section is divided into two categories:
simulator validation, and benchmark and input set char-
acterization.

5.1 Simulator Validation

Black and Shen [2] iteratively improved the accuracy of
their performance model by comparing the cycle count of
their simulator, which targeted a specific architecture,
against the cycle count of the actual hardware. Their results
show that modeling, specification, and abstraction errors
were still present in their simulation model, even after a
long period of debugging.

Desikan et al. [4] measured the amount of error, as
compared to the Alpha 21264 processor, that was present in
an Alpha version of the SimpleScalar simulator. Their
results showed that the simulators that model a generic
machine (i.e., nonspecific architecture) generally report
higher IPCs than simulators that are validated against a
real machine. This result is not particularly surprising since
it is likely that unvalidated, generic-architecture simulators
will tend to underestimate the complexity of the imple-
menting certain microarchitectural features.

Gibson et al. [6] described the types of errors that were
present in the FLASH simulator when compared to the
custom-built FLASH multiprocessor system. Their results
showed that most simulators can accurately predict the
architectural trends if all of the important components have
been accurately modeled and that the margin of error (the
percentage difference in the execution time) of some
simulators was more than 30 percent, which is higher than
the speedups that are often reported for specific architec-
tural enhancements.

5.2 Benchmark and Input Set Characterization

To address the problem of potentially selecting a poor set of
benchmarks, Eeckhout et al. [5] used statistical data analysis
techniques to determine the statistical similarity of bench-
mark and input set pairs. To quantify the similarity, they
used metrics such as the instruction mix, the branch
prediction accuracy, the data and instruction cache miss
rates, the number of instructions in a basic block, and the
maximum amount of parallelism inherent to the bench-
mark. After characterizing each benchmark with the
aforementioned metrics, they used statistical approaches
such as principal component analysis and cluster analysis to
actually cluster the benchmarks and input set pairs
together.

6 CONCLUSION

Computer architects heavily rely on simulators when
designing processor architectures or when evaluating the
performance of processor enhancements. However, due to a
lack of a formalized methodology, most current methods
approach simulation methodology in an ad hoc fashion. As
a result, unnecessary errors arise, such as using poorly

chosen processor parameter values or sets of benchmark
programs. Furthermore, without a formalized methodol-
ogy, computer architects may not glean as much informa-
tion as possible from their simulation results. By adding
statistical rigor to their methodology, computer architects
can have more confidence in their simulation results.

As a first step in developing a formalized simulation
methodology, this paper describes three methods of
improving the simulation methodology in computer archi-
tecture research. The first two methods seek to improve the
simulation setup, while the third seeks to improve the
performance analysis phase of the simulation process. The
first method focuses on how the processor parameter values
are chosen, but can also be used to efficiently and accurately
reduce the design space. In particular, this method
advocates using a Plackett and Burman (PB) design to
determine the most important parameters. The values for
these key parameters need to be chosen with care since the
specific value chosen can seriously affect the performance
results.

The second method focuses on benchmark selection. Our
method groups benchmarks together if they have a similar
effect on the processor. Two benchmarks have similar
effects on the processor if their parameters have similar
ranks. As with the processor parameter selection, a
PB design is used to determine the effect that a benchmark
has on the processor.

Finally, the last method focuses on improving the
performance analysis in the postsimulation phase. This
method uses a PB design to rank the parameters before and
after an enhancement is added to the processor. By compar-
ing the before and after ranks, the effect that the enhancement
has on the processor can be readily determined.

In conclusion, there is plenty of room for improvement
with the current simulation methodology. Adopting some
or all of the methods described in this paper can
significantly improve the quality of, and confidence in,
simulation results.
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