
Simulation of Computer Architectures:
Simulators, Benchmarks, Methodologies,

and Recommendations
Joshua J. Yi, Member, IEEE, and David J. Lilja, Fellow, IEEE

Abstract—Simulators have become an integral part of the computer architecture research and design process. Since they have the

advantages of cost, time, and flexibility, architects use them to guide design space exploration and to quantify the efficacy of an

enhancement. However, long simulation times and poor accuracy limit their effectiveness. To reduce the simulation time, architects

have proposed several techniques that increase the simulation speed or throughput. To increase the accuracy, architects try to

minimize the amount of error in their simulators and have proposed adding statistical rigor to their simulation methodology. Since a

wide range of approaches exist and since many of them overlap, this paper describes, classifies, and compares them to aid the

computer architect in selecting the most appropriate one.

Index Terms—Simulation, modeling of computer architecture, measurement techniques, modeling techniques, measurement,

evaluation, modeling, simulation of multiple-processor systems.

�

1 INTRODUCTION

FOR almost all computer architecture research and design,
quantitative evaluation of future architectures is possi-

ble only by using simulators. Simulators reduce the cost and
time of a project by allowing the architect to quickly
evaluate the performance of a wide range of architectures.

Simulators, however, are limited by two problems, the

first of which is slow simulation speed. Since simulators

usually simulate programs that are supposed to be run on

silicon and since the speed of most cycle-accurate simula-

tors is orders of magnitude slower, simulating all bench-

marks in a suite to completion is virtually impossible. To

minimize the simulation time, architects typically simulate

only a subset of benchmarks, use reduced input sets, or

simulate what is ostensibly a representative set of intervals

from the program.
The second problem is poor accuracy. This problem is

particularly pernicious since virtually every decision that

the architect makes can degrade the accuracy and the

amount of error is impossible to determine ex post facto.

Overall, the accuracy is affected by: the simulator’s

accuracy, the soundness of the simulation methodology,

the representativeness of the benchmarks, and the simula-

tion technique that is used. In this paper, simulation

methodology is the general term that describes how the

architect sets up and runs the simulations. By contrast, a

simulation technique is the approach the architect uses to

perform the simulations, e.g., reduced input sets and
sampling.

Given the importance of simulators, this paper surveys
prior work that proposed approaches to improve computer
architecture simulation methodology and techniques for
cycle-accurate simulation. This work can be classified into
the following categories: simulator validation, parameter
value selection, benchmark selection, simulation techni-
ques, and performance analysis.

2 AN OVERVIEW OF POPULAR AND EMERGING

SIMULATORS AND BENCHMARKS

To provide a common starting point, this section describes a
few popular simulators and benchmark suites. Section 2.1
describes the simulators, while Section 2.2 describes the
benchmark suites. The goal of this section is to give a short
overview of the simulators and benchmarks suites that are
typically used with the simulation methodologies and
techniques described in Section 3.

2.1 Simulator

The simulators that are described in this section are
classified into single-processor performance simulators
(SimpleScalar [6], [57]), full-system simulators (Simics [69],
[120]), single-processor power consumption simulators
(Wattch [12]), multiprocessor performance simulators
(RSIM [46], [95], [26]), and modular simulators (Liberty
[111], [112], [113]).

2.1.1 SimpleScalar: A Single-Processor Performance

Simulator

The SimpleScalar toolkit was initially released in 1995 [6],
while the latest version of SimpleScalar, version 3.0, was
released in 1998. Since then, SimpleScalar has become one of
the most popular simulators, if not the most popular.

268 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

. J.J. Yi is with Freescale Semiconductor, Inc., 7700 West Parmer Lane, MD:
PL30, Austin, TX 78729. E-mail: joshua.yi@freescale.com.

. D.J. Lilja is with the Department of Electrical and Computer Engineering,
University of Minnesota-Twin Cities, 200 Union Street S.E., Minneapolis,
MN 55455. E-mail: lilja@ece.umn.edu.

Manuscript received 16 Jan. 2004; revised 1 June 2005; accepted 18 Sept.
2005; published online 20 Jan. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0019-0104.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

SimpleScalar consists of simulators and the tools that
support the simulators (e.g., a gcc compiler, its libraries,
an assembler, and a linker). The different simulators have a
wide range of speed versus detail trade-offs.

Due to its level of detail, sim-outorder is usually the
simulator of choice for architects. This simulator models a
superscalar processor with a five-stage pipeline. User-
configurable parameters include: the type/size of the
branch predictor, the number of load-store queue entries,
and the cache configuration. One unique structure in sim-

outorder is the register-update unit, which is a combina-
tion of the reorder buffer (ROB) and the functional units’
reservation stations.

Version 4.0 of sim-outorder—called MASE (Micro
Architectural Simulation Environment) [57]—is currently
under development. Its notable features include: 1) splitting
the RUU into a ROB and separate reservation stations, 2) a
“checker” unit that verifies the correct execution of the
program to support speculation, and 3) a more realistic
memory interface.

Downloads and more information about SimpleScalar
can be found at http://www.simplescalar.com.

2.1.2 Simics: Full-System Simulation

Although processor simulators like SimpleScalar model the
microarchitecture, they do not model the entire system or run
an operating system (OS). Cain et al. [14] show that omitting
the OS can produce errors as high as 100 percent in the
simulation results for the SPEC CPU 2000 benchmarks. To
address these problems, architects use full-system simulators
that model the entire system in sufficient depth to run the OS.

Simics is a full-system simulator that is available from
Virtutech AB [69], [120]. Simics supports a wide range of
instruction sets, including Alpha, PowerPC, UltraSparc, and
x86-64, and includes device models, such as graphics cards,
ethernet cards, and bus controllers, that are detailed enough
to run the actual device drivers. Also, Simics can boot and
run unmodified operating systems such as Linux, Solaris,
and Windows XP. Simics’ more interesting features include
breakpoint and replay capabilities, support for program
checkpoints, and using Simics Central to simulate multiple
processors on different physical machines.

Simics includes three processor models that have
different levels of simulation detail and speed [120]. The
fastest simulator models an in-order processor with single-
cycle execution latencies. The slowest simulator is a detailed
out-of-order processor. With this processor model, the user
specifies a detailed timing model and how instructions
should be executed (e.g., how many instructions can be
executed out-of-order and speculatively executed). The
third simulator is a scaled back version of the fully specified
processor that bypasses the user-visible API and reduces
the number of instruction execution options [120] to
improve the simulation speed.

Downloads and more information about Simics can be
found at http://www.virtutech.com.

To reduce the development time of full-system simula-
tors, Mauer et al. [73] proposed timing-first simulation.
Compared to conventional simulators, timing-first simula-
tors have several advantages. First, they have a lower
development time since they do not fully model all aspects

of the system. Although the system is not fully modeled,
their timing-first simulator still executed 99.99 percent of all
instructions correctly while incurring a maximum error of
4.8 percent only. Second, since the functional part of
simulator constantly checks for correct program execution,
errors that would normally cause a conventional simulator
to crash are detected and repaired. Third, by focusing on
the timing part of the simulator first, speculative execution
is modeled more precisely.

Other well-known full-system simulations include:
SimOS from Stanford [93], [94], [126], Mambo from IBM
[98], [102], and SimOS-Alpha from DEC [101].

2.1.3 Wattch: A Single-Processor Power Consumption

Simulator

One of the limiting factors for future processors is their
power dissipation. To estimate a processor’s power
consumption, architects use simulators such as Wattch
[12]. Wattch was developed at Princeton and is based on
sim-outorder, version 3.0. To calculate the power
consumption for a component, Wattch uses the formula:
P ¼ C �V2

dd � a � f, where C is the capacitance along all
paths within the component, Vdd is the supply voltage, a is
the component’s internal switching activity, and f is the
clock frequency. The energy consumed each cycle is simply
the sum of the energy that was consumed by each
component. Wattch models Vdd and f as constants since
they depend on the process technology. Wattch uses
template formulas to calculate the capacitance for four
types of components: array structures (e.g., caches, etc.),
fully associative content addressable memory structures
(e.g., ROB, LSQ, etc.), combinational logic (e.g., functional
units, etc.), and the clock distribution network. The amount
of switching activity is determined by monitoring the actual
bit transitions within the component during simulation. The
results in [12] show that the distribution of energy
consumption across all major processor components is very
close to that of the Pentium Pro and the Alpha 21264, two
processor architectures that are similar to the base Wattch
architecture.

Wattch can be downloaded from http://www.eecs.
harvard.edu/~dbrooks/wattch-form.html.

Although Wattch is the most widely used power
consumption simulator [15], several other simulators
estimate the processor’s power consumption, including
PowerTimer [13] from IBM, SimWattch [15] from the USC,
PowerAnalyzer [90] from Michigan, PowerImpact from
UCLA [91], and SimplePower [119] from Penn State. Of
these simulators, SimWattch is particularly interesting since
it integrates a full-system simulator (Simics) with Wattch.
This is important since omitting operating system effects
leads to overestimation of the performance results while
underestimating the power consumption results [15].

2.1.4 RSIM: A Multiprocessor Performance Simulator

RSIM—the Rice Simulator for ILP Multiprocessors—was
developed at Rice and released to the public in 1997 [46],
[95], [26]. Key RSIM features include out-of-order issue,
register renaming, branch prediction, nonblocking caches,
multiple cache-coherence protocols, and user configurable

YI AND LILJA: SIMULATION OF COMPUTER ARCHITECTURES: SIMULATORS, BENCHMARKS, METHODOLOGIES, AND ... 269

parameters such as instruction window size, cache sizes

and latencies, and flit size and delay [46]. Modeling ILP-

level (i.e., intraprocessor) features is important even when

simulating multiprocessor systems since these features may

interact with thread-level (i.e., interprocessor) features. To

illustrate this problem, Hughes et al. [46] evaluated the

performance of read miss clustering using RSIM and with a

multiprocessor simulator that did not model the ILP-level

features. Their simulation results show that disregarding

the ILP-level features overestimates the execution time by

as much as 132 percent. Even when execution times were

similar, ignoring the ILP-level features still overestimated

the number of cycles due to memory access. Finally, and

perhaps worst of all, the results show that not modeling

ILP-level features could distort the simulation results to

such a degree that the architect would conclude that read

miss clustering enhancement yields very little performance

improvement when it, in actuality, yields significant

performance benefits.
Downloads and more information about RSIM can be

found at: http://rsim.cs.uiuc.edu.
Other multiprocessor simulators include: Talisman [8],

Tango [23], a multiprocessor version of SimpleScalar [70],

Wisconsin Wind Tunnel II [80], Augmint [82], MINT [118],

GEMS [37], [71], and M5 [68].

2.1.5 Modular Simulators

Although processors and systems are highly parallel, the

simulators that model their behavior are typically written

with sequential programming languages. The consequences

of this parallel-to-sequential mapping are that the imple-

mentation and debugging of the simulator can be very time-

consuming, its accuracy may suffer due to insufficient

detail, and component reuse is unlikely.
To minimize the effects of these problems, architects

have proposed using modular simulators such as the

Liberty Simulation Environment (LSE) [111], [85], [112],

[113]. Developed at Princeton, Liberty maps each hardware

component to a single software function; by instantiating

those components and specifying its connections, architects

can hierarchically build more complex processor compo-

nents. Hierarchically building processor components has at

least two key advantages. First, by building and testing

lower-level components hierarchically, the architect can

easily build large libraries of accurate components. Second,

the architect can quickly and easily build a wide range of

models, which allows for efficient design space exploration

and/or the examination of more unusual architectures. To

ensure that future components will seamlessly interface

with current components, the LSE stipulates the control

interface between LSE components; in particular, enable

and ack handshaking signals are used to synchronize the

data transfer between components.
More information and downloads about the LSE can be

found at http://liberty.princeton.edu.
In addition to the LSE, other recent modular simulators

include: Asim [35], EXPRESSION [76], LISA [84], and

Microlib [87].

2.2 Benchmark Programs

This section divides benchmark suites into three categories:
general purpose computing (SPEC CPU 2000 [45]), em-
bedded systems benchmarks (MiBench [42]), and other
benchmark suites.

2.2.1 SPEC CPU 2000: A General Purpose Benchmark

Suite

Benchmark suites released by the Standard Performance
Evaluation Corporation (SPEC) are very popular with
architects, to the point where the SPEC CPU 2000 bench-
mark suite [45] has become the de facto benchmark suite for
general-purpose computing. SPEC released CPU-intensive
benchmark suites in 1989, 1992, 1995, and 2000 [105].

To build a benchmark suite, SPEC solicits candidate
benchmarks from SPEC member companies and the public
and chooses them using three criteria [105]. First, the
benchmark has to be portable across all SPEC hardware
architectures and to various operating systems. Since these
are CPU-intensive benchmarks, the second criterion is that
the benchmarks should not include a measurable amount of
I/O, networking, or graphics. Additionally, to ensure that the
benchmark does not focus on disk activity, the memory
footprint of the benchmark should fit into 256MB of memory
without swapping. Third, less than 5 percent of the bench-
mark’s runtime should be spent executing non-SPEC code. In
SPEC CPU 2000, there are 12 integer and 14 floating-point
benchmarks. The applications for the integer benchmarks
range from compression to word processing, while the
floating-point applications range from computational chem-
istry to nuclear physics accelerator design.

More information about all SPEC benchmark suites can
be found at http://www.spec.org.

Ideally, the benchmarks in a suite completely cover the
application space with as little redundancy as possible and
where each benchmark is not “fragile” (its performance
does not dramatically improve by a trivial optimization).
Vandierendonck and De Bosschere [116] used principal
component analysis (PCA) to determine if the SPEC CPU 95
and 2000 benchmarks were fragile and/or “eccentric.”
Benchmarks are eccentric if their characteristics signifi-
cantly differ from other benchmarks and, for this reason,
when constructing a benchmark suite, these benchmarks
should be added to the suite to cover potential “gaps” in the
space of benchmark characteristics. Their results showed
that both suites have fragile and eccentric benchmarks,
although SPEC CPU 2000 has more eccentric benchmarks.

Phansalkar et al. [88] used PCA to characterize and
compare four successive generations of SPEC CPU bench-
marks, i.e., SPEC CPU 89, 92, 95, and 2000. Their results
showed that, other than dramatic increases in the dynamic
instruction count and increasingly poor temporal data
locality, fundamental program characteristics such as
branch and ILP characteristics are generally static.

2.2.2 MiBench: Embedded Benchmark Suite

Although SPEC CPU 2000 is the most popular benchmark
suite, its benchmarks are not very representative of the
embedded system applications. Therefore, to provide
realistic embedded system benchmarks, architects construct

270 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

benchmark suites that explicitly represent embedded

system applications; one such example is MiBench [42]

from the University of Michigan.
In MiBench, there are six types of benchmarks:

1. automotive and industrial control (six benchmarks),
2. consumer devices (eight),
3. office automation (five),
4. network (two),
5. security (seven), and
6. telecommunications (seven).

Benchmarks in the first category represent applications that
are used for air bag controllers and engine performance

monitors, while benchmarks in the second category

represent the programs that are present in scanners, digital

cameras, and PDAs. Benchmarks in the third category

represent the applications that are found in printers,

copiers, and fax machines. Benchmarks in the fourth and
fifth categories represent programs for shortest path

calculations and tree and table lookups and for encryption,

decryption, and hashing, respectively. Finally, applications

that consist of voice encoding/decoding, along with bench-

marks for frequency analysis and checksum calculation, are
in the sixth category.

MiBench can be downloaded from http://www.eecs.
umich.edu/mibench.

Other embedded benchmark suites include: EEMBC (EDN

Embedded Microprocessor Benchmark Consortium) [124],

[33] for automotive, consumer and digital entertainment (i.e.,

multimedia), java, networking, office automation, and tele-

communications applications; Commbench [127], NetBench

[74], [75], and NpBench [61] for network applications; and
MediaBench [62] for multimedia applications.

2.2.3 Miscellaneous Benchmark Suites

In addition to the above benchmark suites, other suites exist

to measure the performance of other processor architec-

tures. Scientific benchmark suites include SPLASH (Stan-

ford Parallel Applications for Shared Memory) and

SPLASH2 [103], [128], SPEC HPC 2002 and SPEC OMP
[106], ASCI [5], NAS [81], and SciMark [97]. Java bench-

marks include: SPEC JVM98 [108] and SPEC jbb2000 [107]

from SPEC, Java Grande [72], [48], and VolanoMark [121].

Benchmarks from the Transaction Processing Performance

Council [110] measure the rate at which a system can
process business-related transactions and access database

system programs. Other miscellaneous benchmark suites

include 3DMark [1] for 3D applications, BioBench [4] for

bioinformatics benchmarks, SYSmark [109] for office

productivity software, and lmbench [65] and HINT [41]
measure specific processor components.

For more in-depth information about these benchmarks
and others, the reader is referred to [123], [49].

3 SIMULATION METHODOLOGIES AND TECHNIQUES

For architects, the ideal simulator faithfully models all aspects
of the processor, is very easy to modify, and has a very fast
simulation speed [6]. However, finding the proper level of
abstraction [11] is important since increasing the simulator’s
accuracy almost always comes directly at the expense of
speed. In addition, the accuracy of the results also depends on
the simulation methodology, i.e., how the results were
generated. The remainder of this section describes previous
work that proposed approaches to improve simulation
methodology and accuracy, or new simulation techniques.

3.1 The Simulation Process

The simulation process is the sequence of steps that the
architect must perform to run and analyze the simulations.
In this paper, we divide the simulation process into the six
steps shown in Fig. 1. Of these six steps, no previous work
focused specifically on improving the accuracy of imple-
menting a processor enhancement (Step 2). Consequently,
the following subsections focus on Steps 1 and 3-6 only.

3.2 Step #1: Simulator Validation and Accuracy

The starting point for producing accurate results is to use a
simulator that faithfully models the hardware. Black and
Shen [9] iteratively improved the accuracy of their
performance model by comparing the simulated cycle
count against the cycle count of the actual hardware. Even
after a long period of debugging, their results show that
modeling, specification, and abstraction errors were still
present in their simulation model. Their work showed the
need for extensive, iterative validation before the results
from a performance model can be trusted.

Gibson et al. described the errors in the FLASH simulator
when compared to the custom-built FLASH multiprocessor
system [38]. Their results showed that 1) most simulators can
accurately predict the trend if all of the important compo-
nents have been accurately modeled, 2) a faster simulator that
uses a scaling factor for the results often predicts the
processor’s performance more accurately than a more
complex simulator, and 3) the error of some simulators
exceeded 30 percent, which is higher than the speedups that
are often reported for processor enhancements.

Desikan et al. [24], [25] measured the amount of error, as
compared to the Alpha 21264 processor, that was present in

YI AND LILJA: SIMULATION OF COMPUTER ARCHITECTURES: SIMULATORS, BENCHMARKS, METHODOLOGIES, AND ... 271

Fig. 1. The simulation process in computer architecture research and design.

the Alpha version of the SimpleScalar simulator. Their results
showed that unvalidated simulators generally report higher
IPCs than the hardware that they model. This is not surprising
since unvalidated simulators will typically tend to under-
estimate the complexity of implementing some microarchi-
tectural features that have a large impact on the IPC.

Cain et al. [14] measured the effect of the OS and the
effects of I/O on simulator accuracy. Their results showed
that omitting an OS introduced errors as high as 100 percent
for the SPECint 2000 benchmarks. Although non-SPEC code
only accounts for 5 percent of the instructions, the high
amount of error is probably due to the long time needed to
handle DMA and I/O and secondary effects such as the
cache and branch predictor “pollution” due to executing
OS code. Overall, their results showed the need for full-
system simulation for increased accuracy and precision.

Collectively, [9], [14], [24], [25], [38], [79] show that: 1) the
performance results using unvalidated simulators can be
quite different from the target processor and, consequently,
cannot be fully trusted and 2) architects need to use detailed
simulators to eliminate abstraction errors. These conclu-
sions are especially significant for architects since the
performance of an enhancement is usually based only on
the simulation results. Consequently, it is important that
future simulators be very detailed and undergo a significant
amount of validation.

3.3 Step #3: Select Processor and Memory
Parameter Values

In the third step of the simulation process, the architect
chooses values for the processor and memory parameters.
Obviously, choosing an inappropriate set of parameter
values can significantly affect the simulation results.
However, architects cannot choose each parameter inde-
pendently of the other parameters since many of the
parameters interact in unexpected ways and since these
interactions can significantly impact the results. Unfortu-
nately, determining which parameters are significant is very
time consuming due to the large number of parameters in
most simulators.

To address this problem, Yi et al. [132] proposed using
the statistical Plackett and Burman (P&B) design to
determine the most significant parameters. A P&B design
is superior to the Analysis of Variance (ANOVA) design
[63] in that it quantifies the effect of single parameters and
selected interactions only, in OðNÞ simulations, where N is
the number of parameters. By contrast, the ANOVA design
requires Oð2NÞ simulations to determine the effect of all
parameters and interactions. Since the P&B design can
identify the most significant parameters, the difficulty of
choosing parameter values is greatly reduced. In particular,
Yi et al. [132] recommend using the following steps to
choose the values for processor and memory parameters:

1. Determine the most critical parameters using a
Plackett and Burman design.

2. Iteratively perform sensitivity analyses for each
critical parameter using ANOVA.

3. Choose final values for the critical parameters based
on the results of the sensitivity analyses.

4. Choose final values for the noncritical parameters
based on an appropriate source, such as using the
values that are common in commercial processors,
for instance.

3.4 Step #4: Select Benchmarks and Input Sets

For most research and design projects, simulating all of the
benchmarks in a suite is not possible due to finite
computing resources. To reduce the simulation time,
architects typically simulate only a subset of the suite’s
benchmarks. However, choosing a nonrepresentative subset
can skew the results. As a result, instead of selecting
benchmarks at random or based on fuzzy, unproven
characteristics, architects should select benchmarks in a
rigorous, quantitatively justifiable manner.

Citron [18] analyzed how and why architects selected
benchmarks from the SPEC CPU 2000 suite. His results
showed that most papers publish results for only a few
selected benchmarks. For example, in the ISCA 2002
conference, of the 23 papers for which SPEC CPU 2000
was an appropriate choice, only four and six papers used all
12 integer and 14 floating-point benchmarks, respectively.
Even then, when a subset was used, for the most prestigious
conferences (ISCA 2001-2002, MICRO 2001-2002, and HPCA
2002-2003), less than a third of the papers that used a subset
of SPEC CPU 2000 explained why they selected that subset.

Yi et al. [132] classified benchmarks based on the
similarity of their performance bottlenecks, which they
determined using a P&B design. The parameters were
ranked in descending order of importance, where a rank of
“1” was assigned to the most significant parameter, and
then vectorized. Two benchmarks are similar if the
Euclidean distance between their vectors of ranks is small.
By iteratively computing the Euclidean distance between
each pair of vectors (benchmarks) and, subsequently,
groups of vectors, all benchmarks were clustered.

To characterize a set of benchmarks, Eeckhout et al. [27],
[28] first gathered a set of metrics such as the instruction
mix, branch prediction accuracy, cache miss rates, and basic
block lengths for each benchmark and input set pair. After
gathering these metrics, they used PCA to determine the
principal components for each pair and then clustered the
pairs based on their principal components. Phansalkar et al.
[88] also used PCA to characterize the benchmark and input
set pairs, but they used k-means clustering and the Bayesian
Information Criterion instead to cluster the benchmark and
input set pairs. Using this approach, they were able to
represent the entire SPEC CPU 2000 benchmark suite with
eight benchmarks, with less than 5 percent error for 8 and
16-way processors.

Although these papers differ in their benchmark classifi-
cation approaches, their basic motivation is the same, namely,
they propose statistically rigorous approaches of benchmark
classification. After classifying the benchmarks into N
different groups, where N is the maximum number of
benchmarks that can be simulated, the architect needs only
to select one benchmark from each group to form a subset of
benchmarks to represent the entire suite. The key difference
between [132] and [27], [28], [88] is that [132] classifies
benchmarks based on their performance bottlenecks while

272 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

[27], [28], [88] classify them based on architectural perfor-
mance metrics.

Finally, Vandierendonck and De Bosschere [117] evalu-
ated the accuracy of four clustering algorithms for a varying
number of clusters when subsetting the SPEC CPU 2000 suite.
Specifically, they examined k-means clustering, linkage
clustering, and two PCA-based methods. Their results show
that none of these algorithms consistently produces a
representative subset of benchmarks. The most reliable
technique was the backwards algorithm based on PCA.

3.5 Step #5: Simulation

After selecting the parameter values and benchmarks, the
architect runs the simulations. Unfortunately, for bench-
mark suites such as SPEC CPU 2000, the simulation time is
measured in weeks. To combat this problem, architects have
proposed several different techniques with a wide range of
accuracies and speeds.

3.5.1 Reduced Input Set Simulation Techniques

One obvious approach to reduce the simulation time is to
modify the input set such that the benchmark executes
fewer instructions, while, ideally, having the same char-
acteristics as the full input set. Reduced input sets have two
advantages over other simulation techniques. First, the
benchmark runs to completion, which means that the
simulator executes all pieces (e.g., initialization) of the
program. Second, using reduced input sets typically does
not require any changes to the simulator.

KleinOsowski and Lilja [53] created the MinneSPEC
reduced input set for the SPEC CPU 2000 benchmarks. They
were created by modifying command-line parameters,
truncating the reference input set, or creating a com-
pletely new input set. For each benchmark, they tried to
create three reduced input sets, small, medium, and
large, that executed approximately 100M, 500M, and
1,000M, respectively, dynamic instructions. Their results
showed that 18 of the 32 benchmark and input set pairs had
execution profiles that were statistically similar (using the
chi-squared test) to the reference input set. Furthermore,
25 pairs had statistically similar instruction mixes. How-
ever, their results showed that the reduced input set cache
miss rates were very different for some benchmarks. Not
surprisingly, this difference translates into poor IPC
accuracy [133]. Eeckhout et al. [29] show that the large
input set is typically the most reference-like.

Alameldeen et al. [2] created reduced input sets for TPC-C
based on the metric of transaction throughput. Since the
initial throughput was too low, they proceeded to:

1. tune several kernel and database parameters,
2. relieve the I/O bottleneck by partitioning the

database across five disks,
3. increase the number of warehouses without increas-

ing the database size to decrease the amount of
contention to the same warehouse table, and

4. add more users.

These changes resulted in a 12-fold increase in the
transaction throughput, which made the workload more
representative of OLTP workloads.

The key conclusion from these two papers is that
creating a reduced input set that accurately replicates the
characteristics of the full input set is a very time-consuming
and user-intensive task, especially so since reduced input
sets need to be recreated for each new suite.

3.5.2 Truncated Execution Simulation Techniques

Truncated execution is another technique that can signifi-
cantly reduce the simulation time. With this technique,
instead of simulating the entire benchmark, the architect
simulates Z million contiguous instructions only from
somewhere in the benchmark. The three main variations
of truncated execution are Run Z, Fast-Forward X + Run Z

(FF X+ Run Z), and Fast-Forward X + Warmup Y + Run Z

(FF X + WU Y + Run Z).
With Run Z, the architect simulates only the first

Z million instructions of the benchmark and then stops
the simulation. The simulation time is proportional to the
value of Z. One problem with this approach is that the
entire simulation could be spent executing initialization
code, which is not representative of the entire benchmark.
Increasing the value of Z to avoid executing the initializa-
tion code only erodes the benefit of this technique by
increasing the simulation time.

To potentially simulate a more representative slice of the
benchmark, the FF X + Run Z variation fast-forwards (i.e.,
performs functional simulation only) through the first
Xmillion instructions and then performs detailed simulation
of the next Z million only. To minimize the effect of a “cold”
processor and memory subsystem (MSS), which is the state
after fast-forwarding, the architect can “warmup” the
processor and MSS by performing detailed simulation for Y
million instructions after fast-forwarding. Then, for the
simulation results, the architect can track the statistics over
the next Z million instructions of detailed simulation only.
Depending on the value of X, the simulation time of fast-
forwarding can be significantly longer than the Run Z time.

3.5.3 Processor Warmup Approaches

Although warmup improves the simulation accuracy, it
also increases the simulation time, accounting for 50 percent
or more of the time [43]. Therefore, reducing the warmup
time can significantly decrease the simulation time.

Haskins and Skadron [43] proposed Minimal Subset
Evaluation (MSE) to minimize the number of warmup
instructions. MSE probabilistically determines a minimal set
of cache accesses that need to occur to produce a sufficiently
accurate cache state. Their results showed that, for a
99.9 percent confidence level, MSE decreased the warmup
time by an average of 47 percent with only a 0.3 percent IPC
error. At 95 percent, the warmup time decreased by an
average of 60 percent with a 0.4 percent IPC error.

Their following approach—Memory Reference Reuse
Latency (MRRL) [44]—used the time between memory
references to determine the number of warmup instruc-
tions. More specifically, this approach determines the
number of warmup instructions such that N percent of
them have reuse latencies (number of instructions between
accesses to the same address) less than the number of
warmup instructions. This approach exploits the fact that
memory references exhibit temporal locality since addresses

YI AND LILJA: SIMULATION OF COMPUTER ARCHITECTURES: SIMULATORS, BENCHMARKS, METHODOLOGIES, AND ... 273

that are not accessed in the warmup period will probably
not be accessed again during detailed simulation. Their
results showed that this approach reduces the warmup time
by an average of 90.6 percent with less than 1 percent IPC
error.

One potential weakness of MRRL is that it computes
most of the reuse latencies from the instructions in the
warmup period, instead of basing them on the instructions
in the detailed simulation period. Eeckhout et al. improve
on this approach by calculating the reuse latency for each
memory reference in the detailed simulation period back
into the warmup period [30]. Van Biesbrouck et al. describe
a faster version of MRRL in [115].

One key feature of these approaches is that they can be
added to any fast-forwarding or sampling-based technique.
Their drawback, however, is that they determine the
warmup period offline. Luo et al. [67] dynamically
determine the warmup time by using two criteria: 1) after
all cache lines have been accessed at least once or 2) after a
certain, user-defined, number of cache accesses. The former
approach is more appropriate for smaller caches and/or
programs with smaller memory footprints, while the
opposite is true for the latter.

Other warmup approaches include: 1) assuming that
each cache entry hits when accessed for the first time [129],
2) reusing the cache state as it existed at the end of the last
interval [51], and 3) continually updating the caches and
branch predictor during nondetailed simulation [130].

3.5.4 Sampling Simulation Techniques

Population sampling is a statistical technique that is used to
infer the characteristics of a larger set by extrapolating from
the characteristics observed in a subset. The key to good
results is to ensure that the sample accurately reflects the
overall population. Three primary sampling techniques,
representative, periodic, and random, have been proposed
for use in simulation-based computer architecture research
studies.

Representative Sampling Simulation Techniques. Re-
presentative sampling attempts to extract a subset of a
benchmark’s instructions that matches its overall execution
behavior. In computer architecture, representative sampling
can be applied by determining a group of intervals that
could be substituted for the entire benchmark.

To choose a representative instruction interval of 50M
instructions, Skadron et al. [104] quantified the branch
misprediction rate for 1M instruction intervals. Then, by
examining branch misprediction rates over the entire
benchmark’s execution, they selected a representative 50M
interval. Their results showed that the accuracy heavily
depends on the warmup length.

Instead of using the branch misprediction rate—which is
configuration dependent—Lafage and Seznec [55] charac-
terized each 1M interval based on the amount of temporal
and spatial locality intrinsic to that interval. After clustering
the intervals together based on the similarity of their
temporal and spatial locality, they selected the interval that
was closest to the centroid of the cluster as the cluster’s
representative. Their results show that the relative error in
the cache miss rate averaged 1.52 percent while requiring
only 3.34 percent of the simulation time for SPEC CPU 95.

For SimPoint, Sherwood et al. [100], [99] characterize
each instruction interval, or simulation point, using basic
block vectors (BBV). For each interval, the BBV contains the
execution frequency of each basic block multiplied by the
number of instructions in that block. (Instead of using BBVs,
Lau et al. [58] used other metrics, such as loop branches,
register usage, etc., to characterize each interval.) After
using linear random projection to reduce the dimensionality
of each BBV, they used k-means clustering to cluster the
intervals based on their Euclidean distance and then
selected the interval closest to the centroid of each cluster.
To use SimPoint, the architect simulates each selected
interval and multiplies the results for that interval by its
corresponding weight, before summing the weighted
products together. Their results showed that using multiple
intervals dramatically decreased the simulation time with
an average IPC error of 3 percent. Perelman et al. [86]
improved the basic SimPoint algorithm in two ways. First,
their algorithm estimates the amount of CPI error for a
given confidence interval and then selects the set of
intervals with the least amount of CPI error. Second, to
reduce the fast-forwarding time, their algorithm chooses
intervals that occur earlier in the program. Finally, Lau et al.
[59] extended SimPoint to allow for variable-length inter-
vals (to better align the intervals to the phase boundaries),
while Van Biesbrouck et al. [114] extended SimPoint to
accurately guide simultaneous multithreading simulations.

For EXPERT, Liu and Huang [64] partitioned the bench-
mark into sections of static code, characterized each section
with several different metrics (CPI, basic block size, branch
prediction accuracy, etc.) with multiple input sets and
processor configurations, and, then, based on the character-
ization results, chose which instances of static code to
simulate. Their results showed that this approach dramati-
cally reduces the simulation time (excluding the one-time
characterization runs) while incurring an average error of
1 percent.

Periodic Sampling Simulation Techniques. Periodic
sampling simulates selected portions of the dynamic instruc-
tion stream at fixed intervals. The sampling frequency and the
interval length determine the simulation time.

SMARTS (Sampling Microarchitectural Simulation) [130]
is a recent example of periodic sampling. To minimize the
explicit detailed warmup period, SMARTS uses functional

warming (continuous updates of the caches and branch
predictor during functional simulation) to keep key
components warm. SMARTS estimates the CPI error of
the sampled simulation and, if the estimated error is higher
than �3 percent, for a given confidence level, SMARTS
suggests using a higher sampling frequency. Their results
showed that SMARTS yields speedups of 36X to 60X while
incurring an average error of 0.64 percent in the CPI and
0.59 percent in the energy per instruction. TurboSMARTS
improves the simulation speed of SMARTS by using
checkpoints [125]. They minimize the size of the check-
points by identifying the sequence of instructions that
commit during warmup and detailed simulation and store
only the state that these instructions access, in addition to
storing only correct-path memory accesses.

274 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

Random Sampling Simulation Techniques. Random
sampling combines the simulation results from N randomly
chosen and distributed intervals to produce the overall
simulation results. For random sampling, the sampling
error falls into two groups: nonsampling and sampling bias.
Nonsampling bias occurs when the sampled population
differs from the actual population, which, in computer
architecture simulations, is primarily due to the cold-start
effect [19]; increasing the warmup time or using a more
accurate processor state reduces this effect. Sampling bias
occurs when the mean of the sampled distribution differs
from the population mean, which, in computer architecture
simulation, is the result of simulating an insufficient
number of instructions. To minimize the effects of sampling
bias, architects merely need to increase the number of
sampling units or increase the number of instructions in
each sampling unit.

A Comparison of Periodic and Random Sampling. If a
benchmark has periodic behavior and if the sampling
frequency is close to the benchmark’s natural frequency,
then periodic sampling will have a lower accuracy than
random sampling, potentially even when random sampling
takes fewer measurements. For example, assume that the IPC
graph of a benchmark resembles a sine wave and that
periodic sampling happens to take samples at the peak. In this
case, periodic sampling will estimate that the benchmark’s
IPC is equal to the peak IPC. On the other hand, random
sampling will yield a more accurate estimate of the bench-
mark’s IPC if enough measurements have been made. While
it may be rare that the sampling frequency is similar to the
benchmark’s frequency, it is more likely that the sampling
frequency may be the same as the natural frequency of some
of the benchmark’s phases. For those phases, periodic
sampling will yield poor estimates of the IPC.

However, when the benchmark and sampling frequen-
cies are dissimilar, the accuracy of random sampling will be
lower than that of periodic sampling, for the same number
of sampling units, if and only if the intrasample variance is
greater than the variance of the population as a whole.
Since random sampling randomly simulates intervals of
instructions throughout the entire duration of the program,
some phases of the program could be oversampled at the
expense of undersampling other phases. This overweighs
the oversampled phases, which decreases the accuracy. In
this case, the architect needs to take more samples—which
increases the simulation time—to minimize the error. On
the other hand, if the sampling frequency is not high
enough, then periodic sampling is guaranteed to under-
sample some/all phases.

With random sampling, each instruction has the same
probability of being included within a sample. Conse-
quently, it is reasonable to assume that the distribution of
errors for random sampling follows a Gaussian distribution.
Similarly, with periodic sampling, each instruction also has
an equal probability of being included within a sample if
the starting point of the first sample is randomly chosen and
there is no synchronization between the sampling function
and any repetition of events in the process being sampled.
Consequently, it is again reasonable to assume a Gaussian
error distribution for periodic sampling. This assumption is

further strengthened by ensuring that a large number of
samples are taken. In this event, the central limit theorem
assures us that the error distribution will, in fact, be
Gaussian [63] for both forms of sampling. However, if the
number of sampling units is small, then the Gaussian error
distribution assumption may be suspect for both random
and periodic sampling.

A more important assumption than the Gaussian
distribution of errors is the estimate of the variance between
sampling units. Periodic sampling will likely overestimate
the variance as compared to random sampling, which
provides conservative estimates of the precision of the
measurements obtained with periodic sampling. This over-
estimation is good since it forces the experimenter to select
more sampling units than are actually necessary to obtain
the desired precision, at the cost of longer simulation time.

In summary, both random and periodic sampling have
their strengths and weaknesses. However, if a large number
of samples is taken using either approach and it can be
ensured that the sampling frequency of periodic sampling is
asynchronous with respect to program phases, either
approach can be used effectively.

Other Sampling Techniques and Papers. Wunderlich
et al. [131] analyzed the potential speed and accuracy of
stratified sampling. Laha et al. [56] and Conte et al. [20]
proposed sampling-based techniques to quickly evaluate
cache performance. Iyengar et al. [47] described a new
metric, the R-metric, which is based on microarchitectural
metrics, that evaluates the representativeness of an instruc-
tion trace, while Khalid [52] does the same for the K-metric,
which is based on the instruction mix. Ekman and
Stenstrom [34] proposed using matched-pair comparison
to reduce the simulation time of sampling-based ap-
proaches. For benchmarks such as Acrobat Reader, Nets-
cape, and Word, Crowley and Baer [21], [22] show that trace
sampling can accurately estimate cache miss ratios pro-
vided that the processor is properly warmed up before the
start of each sample. Finally, the results in [66] show that,
when using sampling, to produce accurate estimates of the
speedup, it is not necessary to estimate the CPI to the same
level of accuracy (as is needed for accurate CPI estimates).

3.5.5 Accelerating Simulation: Direct-Execution,

Checkpointing, and Parallel-Simulation, Efficient

Simulator Implementation Techniques.

As the dynamic instruction count increases, the speed of
functional simulation, i.e., fast-forwarding, limits the
potential speedup of sampling-based techniques. To in-
crease the speed of functional simulation, architects can run
the benchmark directly on the host machine, instead of
simulating the benchmark during the functional simulation
period. This approach is called direct-execution. Various
implementations of direct-execution include [126], [54], [16].

To eliminate the fast-forwarding time, architects can use
checkpoints to minimize the simulation time. To create a
checkpoint, the architect executes the program until the
checkpoint and then saves the program state to a
checkpoint file. Then, before simulation, the user-visible
registers are updated with the contents of the checkpoint
file. Not only does checkpointing allow the architect to skip

YI AND LILJA: SIMULATION OF COMPUTER ARCHITECTURES: SIMULATORS, BENCHMARKS, METHODOLOGIES, AND ... 275

over fast-forwarding in future simulations, it also permits
multiple intervals to be simulated in parallel. Schnarr and
Larus [96] showed that memoization (i.e., checkpointing)
improved the performance of their cycle-accurate simulator
by a factor of 4.9 to 11.9. Barr et al. [7] described how to add
memory timestamp records to multiprocessor checkpoints
to minimize the warmup time of multiprocessor simula-
tions. Ringenberg et al. [92] propose adding explicit
checkpointing support into the benchmark program so that
the start of the benchmark binary contains the check-
point(s). Van Biesbrouck et al. describe a technique to
reduce the checkpoint size in [115].

Another approach to improve simulation speed is to
parallelize the simulation by distributing the simulation
across several processors. However, the downside of this
approach is that the simulated processor needs to be
warmed up for each distributed simulation interval, which
decreases the speedup of distributing the simulation. To
minimize the effect of distributed warmup, Girbal et al. [39]
dynamically adjust the warmup time by comparing the
CPIs of the instructions that overlap two intervals (since the
same instructions that are used for warmup on one
processor are simulated in detailed on another). When the
CPIs are within a user-defined range, the warmup period is
over. One key advantage of this approach is that it
essentially distributes the simulation workload based on
the accuracy. Other approaches to parallel simulation
include [17], [31], [36], [60], [83], [89], [122].

Finally, Moudgill [77], [78] describes several implemen-
tation techniques to improve the speed of the simulator
such as simulating the pipeline in reverse order, building
less-detailed processor models at compile time, and
techniques to reduce the search time of tag arrays for cache
simulation.

For more in-depth information on these simulation
techniques and others, see [32].

3.5.6 Comparison of Simulation Techniques

Yi et al. [133] characterized and compared three truncated
execution variations, reduced input sets, SimPoint, and
SMARTS. They characterized these techniques by their
performance bottlenecks (via the P&B design), basic-block
execution frequencies, and architectural-level performance
metrics (IPC, cache miss rate, and branch prediction
accuracy). They also compared the speed versus accuracy
and the configuration independence of each technique.
Their results showed that, for all three characterizations,
truncated execution and reduced input sets had very poor
accuracy, as compared to the reference input set. Overall,
both SimPoint and SMARTS are very accurate; the most
accurate SimPoint permutation is multiple 10M simulation
points, while the most accurate SMARTS configuration is
for a simulation interval of 10,000 instructions. Although
SMARTS is more accurate than SimPoint, SimPoint requires
less simulation time than does SMARTS, even after
accounting for the time needed for profiling, simulation
point generation, and checkpoint generation. Finally, of
these techniques, SMARTS is the technique that is the most
configuration independent since it has the lowest CPI error
across a wide range of processor configurations.

Gómez et al. [40] show that the L2 behavior and branch
prediction accuracy of several MinneSPEC reduced input
sets are not reference-like and that the accuracy of
truncated execution depends heavily on fast-forwarding to
a representative interval.

3.5.7 Minimizing Variability in Multiprocessor Simulation

Results

Since most simulators are deterministic, one characteristic
of real systems that architects typically do not account for is
experimental variability, which may result in incorrect
conclusions.

Alameldeen and Wood [3] investigated the potential
impact that variability can have on the simulation results.
To demonstrate the potential effect of variability, they
added a random amount of time to each L2 cache miss and
measured its effect on the execution time for increasing
L2 cache associativity and ROB entries. Each test case was
run 20 times. Their results showed that, due to this
variability, an architect could arrive at the wrong conclu-
sion that 31 percent and 26 percent of the time for increasing
L2 cache associativity and ROB entries, respectively. To
minimize this potential problem, they recommended add-
ing pseudorandom perturbation to the simulations, simu-
lating each test case multiple times, and using confidence
intervals and hypothesis testing.

3.6 Step #6: Performance Analysis

The last step in the simulation process is to analyze the
effect that an enhancement has. For most studies, this
analysis extends only to calculating the speedup or
measuring the change in a key metric. Unfortunately, these
approaches only give the architect a high-level, net-effect
picture.

For a more detailed analysis, Yi et al. [132] proposed
using the P&B design to quantify the effect that an
enhancement has on the processor’s performance bottle-
necks. The results of a P&B design can be used to rank the
performance bottlenecks with and without the enhance-
ment. By comparing the change in a bottleneck’s rank with
and without the enhancement, the architect can easily
determine if the enhancement relieves or exacerbates each
bottleneck.

3.7 Comparing Absolute Accuracy versus Relative
Accuracy

Although the absolute accuracy of a simulator/technique is
very important, perhaps what is more important, is its
relative accuracy, i.e., how well each tracks changes in the
target value. Therefore, while a simulator/technique may
have poor absolute accuracy since it consistently over-
estimates the IPC, it may have excellent relative accuracy
since its estimated IPC changes by the same amount as the
actual IPC. Early in the design cycle, achieving good
relative accuracy is more important, while, later in the
design cycle, absolute accuracy increases in significance
since it is important to quantify the exact performance of the
processor.

For more in-depth information on additional measure-
ment techniques and simulation methodology, see [50], [10].

276 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

4 RECOMMENDATIONS AND FUTURE WORK

The first half of this section describes three recommendations
that add scientific rigor to the simulation process, while the
second half describes two avenues for future work.

Recommendation #1: Improve the documentation of
simulation methodologies. We examined the proceedings
for HPCA, ISCA, and MICRO from 1994 to 2003 for the
simulation techniques that were used in each paper and
found that we could not determine the specific techniques
used in over half of the papers due to inadequate
documentation. Also, less a third of the papers in HPCA,
ISCA, and MICRO 2001 to 2003 explained why a particular
subset of the SPEC CPU 2000 benchmarks was chosen [18].
Obviously, inadequate documentation makes it very diffi-
cult for the community to validate those results and build
upon that work. Consequently, to ensure repeatability,
architects should carefully document their simulation
methodology.

Recommendation #2: Computer architects should be
careful when choosing a set of parameter values, bench-
marks and input sets, and simulation technique. Since
poor choices can significantly affect the simulation results,
architects should make careful choices and provide justifica-
tions for those choices. While this recommendation may seem
obvious, we have read many papers that used very unusual
processor and memory parameter values. In particular,
architects should choose memory latency values that accu-
rately reflect what exists for current-generation processors.
Since the memory latency for current-generation processors
is a few hundred cycles, choosing a memory latency of 100
cycles for a 16-way issue processor underestimates the
penalty of L2 misses. Also, architects should use benchmark
classification algorithms found in [27], [28], [132] to help
guide their benchmark selections. Finally, based on [133],
architects should only use sampling-based reduced-time
simulation techniques, e.g., SimPoint, SMARTS, and ran-
dom, due to their high accuracy.

Recommendation #3: Statistical approaches should be
used to help reduce the number of simulations and to
analyze the simulation results. Using statistical methods can
add scientific rigor to the results, minimize methodological
errors, and improve the quality and depth of the work.

Future work on simulation methodology should proceed
along two avenues. First, to improve the accuracy of
simulation results, more detail should be added to simula-
tors. As described in [46], [9], [24], [25], [38], [14], simulation
can accurately predict architectural trends if all components
have been modeled in depth. Adding more detail to the
simulator to model all components and to model existing
components in more depth can only improve the accuracy of
the results. For example, adding more detail to accurately
model intraprocessor, as well as interprocessor, bus traffic
can give more realistic simulation results.

Since increased detailed may result in slower speed, the
second avenue of future work is to increase the raw
simulator speed or the throughput. Increasing the speed
will also allow architects to make more thorough searches
of the design space, to simulate more realistic benchmarks
(such as OLTP and database workloads), and to simulate a
wider range of benchmark programs.

5 SUMMARY

Due to cost, time, and flexibility constraints, simulators are
the most important tool available for computer architecture
research. However, slow simulation speed and potentially
poor accuracy limit the effectiveness of simulators. The
causes of insufficient speed are detailed simulators, the
large number of benchmarks in a benchmark suite, and the
long simulation times of those benchmarks. To reduce the
time, architects typically simulate a subset of the bench-
marks, use smaller input sets, or simulate only selected
pieces of the benchmarks. Unfortunately, these techniques
often trade speed for accuracy. Other sources of inaccuracy
include poor choices of processor and memory parameter
values and poor simulation methodology.

To address these problems, architects have proposed
several solutions. To categorize the solutions, previous
work in this area was divided into work that focused on:

1. simulator validation and accuracy,
2. processor and memory parameter value selection,
3. benchmark and input set selection,
4. simulation, and
5. performance analysis.

Most previous work focused on the fourth category by
proposing solutions that reduced the simulation time while
maintaining a similar level of accuracy. More specifically,
this paper described and compared techniques, including
truncated execution, fast and accurate warmup, reduced
input sets, and representative, periodic, and random
sampling.

This paper also offers three specific recommendations.
Specifically, computer architects should: 1) fully document
their simulation steps, 2) carefully choose parameter values,
benchmarks, input sets, and techniques, and 3) use statistics
to improve the rigor of their work. Adopting these
suggestions will help to provide a sound, scientific under-
pinning for computer architecture research.

REFERENCES

[1] http://www.futuremark.com/products/3dmark05, 2006.
[2] A. Alameldeen, M. Martin, C. Mauer, K. Moore, M. Xu, D. Sorin,

M. Hill, and D. Wood, “Simulating a $2M Commercial Server on a
$2K PC,” Computer, vol. 36, no. 2, pp. 50-57, Feb. 2003.

[3] A. Alameldeen and D. Wood, “Variability in Architectural
Simulations of Multi-threaded Workloads,” Proc. Int’l Symp. High
Performance Computer Architecture, 2003.

[4] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C.
Tseng, and D. Yeung, “BioBench: A Benchmark Suite of
Bioinformatics Applications,” Proc. Int’l Symp. Performance Analy-
sis of Systems and Software, 2005.

[5] http://www.llnl.gov/asci_benchmarks/asci/asci_code_list.html,
2006.

[6] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infra-
structure for Computer System Modeling,” Computer, vol. 35, no. 2,
pp. 59-67, Feb. 2002.

[7] K. Barr, H. Pan, M. Zhang, and K. Asanovic, “Accelerating
Multiprocessor Simulation with a Memory Timestamp Record,”
Proc. Int’l Symp. Performance Analysis of Systems and Software, 2005.

[8] R. Bedichek, “Talisman: Fast and Accurate Multicomputer
Simulation,” Proc. Joint Int’l Conf. Measurement and Modeling of
Computer Systems, 1995.

[9] B. Black and J. Shen, “Calibration of Microprocessor Performance
Models,” Computer, vol. 31, no. 5, pp. 59-65, May 1998.

[10] P. Bose and T. Conte, “Performance Analysis and Its Impact on
Design,” Computer, vol. 31 , no. 5, pp. 41-49, May 1998.

YI AND LILJA: SIMULATION OF COMPUTER ARCHITECTURES: SIMULATORS, BENCHMARKS, METHODOLOGIES, AND ... 277

[11] P. Bose, T. Conte, and T. Austin, “Challenges in Processor
Modeling and Validation,” IEEE Micro, vol. 19, no. 3, May/June
1999.

[12] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations,” Proc.
Int’l Symp. Computer Architecture, 2000.

[13] D. Brooks, P. Bose, V. Srinivasan, M. Gschwind, P. Emma, and M.
Rosenfield, “New Methodology for Early-Stage, Microarchitec-
ture-Level Power-Performance Analysis of Microprocessors,” IBM
J. Research and Development, vol. 47, nos. 5/6, pp. 653-670, Sept.
2003.

[14] H. Cain, K. Lepak, B. Schwartz, and M. Lipasti, “Precise and
Accurate Processor Simulation,” Proc. Workshop Computer Archi-
tecture Evaluation Using Commercial Workloads, 2002.

[15] J. Chen, M. Dubois, and P. Stenstrom, “Integrating Complete-
System and User-Level Performance/Power Simulators: The
SimWattch Approach,” Proc. Int’l Symp. Performance Analysis of
Systems and Software, 2003.

[16] S. Chen, “Direct SMARTS: Accelerating Microarchitectural Simu-
lation through Direct Execution,” master’s thesis, Carnegie Mellon
Univ., 2004.

[17] M. Chidester and A. George, “Parallel Simulation of Chip-
Multiprocessor Architectures,” ACM Trans. Modeling and Computer
Simulation, vol. 12, no. 3, pp. 176-200, July 2002.

[18] D. Citron, “MisSPECulation: Partial and Misleading Use of SPEC
CPU2000 in Computer Architecture Conferences,” Panel Discus-
sion at Int’l Symp. Computer Architecture, 2003.

[19] T. Conte, M. Hirsch, and K. Menezes, “Reducing State Loss for
Effective Trace Sampling of Superscalar Processors,” Proc. Int’l
Conf. Computer Design, 1996.

[20] T. Conte, M. Hirsch, and W. Hwu, “Combining Trace Sampling
with Single Pass Methods for Efficient Cache Simulation,” IEEE
Trans. Computers, vol. 47 , no. 6, pp. 714-720, June 1998.

[21] P. Crowley and J. Baer, “Trace Sampling for Desktop Applications
on Windows NT,” Proc. Workshop Workload Characterization, 1998.

[22] P. Crowley and J. Baer, “On the Use of Trace Sampling for
Architectural Studies of Desktop Applications,” Proc. Joint Int’l
Conf. Measurement and Modeling of Computer Systems, 1999.

[23] H. Davis, S. Goldschmidt, and J. Hennessy, “Multiprocessor
Simulation and Tracing Using Tango,” Proc. Int’l Conf. Parallel
Processing, 1991.

[24] R. Desikan, D. Burger, and S. Keckler, “Measuring Experimental
Error in Microprocessor Simulation,” Proc. Int’l Symp. Computer
Architecture, 2001.

[25] R. Desikan, D. Burger, S. Keckler, L. Cruz, F. Latorre, A. González,
and M. Valero, “Errata On: Measuring Experimental Error in
Microprocessor Simulation,” Computer Architecture News, vol. 30,
no. 1, Mar. 2002.

[26] M. Durbhakula, V. Pai, and S. Adve, “Improving the Accuracy vs.
Speed Tradeoff for Simulating Shared-Memory Multiprocessors
with ILP Processors,” Proc. Int’l Symp. High Performance Computer
Architecture, 1999.

[27] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “How
Input Data Sets Change Program Behaviour,” Proc. Workshop
Computer Architecture Evaluation Using Commercial Workloads, 2002.

[28] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Work-
load Design: Selecting Representative Program-Input Pairs,” Proc.
Int’l Conf. Parallel Architectures and Compilation Techniques, 2002.

[29] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Design-
ing Computer Architecture Workloads,” Computer, vol. 36, no. 2,
pp. 65-71, Feb. 2003.

[30] L. Eeckhout, S. Eyerman, B. Callens, and K. De Bosschere,
“Accurately Warmed-Up Trace Samples for the Evaluation of
Cache Memories,” Proc. High Performance Computing Symp., 2003.

[31] L. Eeckhout and K. De Bosschere, “Efficient Simulation of Trace
Samples on Parallel Machines,” Parallel Computing, vol. 30, no. 3,
pp. 317-335, Mar. 2004.

[32] L. Eeckhout and K. De Bosschere, “Speeding Up Architectural
Simulations for High Performance Processors,” SIMULATION:
Trans. Soc. Modeling and Simulation Int’l, vol. 80, no. 9, pp. 451-468,
2004.

[33] http://www.eembc.org, 2006.
[34] M. Ekman and P. Stenstrom, “Enhancing Multiprocessor Archi-

tecture Simulation Speed Using Matched-Pair Comparison,” Proc.
Int’l Symp. Performance Analysis of Systems and Software, 2005.

[35] J. Emer, P. Ahuja, E. Borch, A. Klauser, C. Luk, S. Manne, S.
Mukherjee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan,
“Asim: A Performance Model Framework,” Computer, vol. 35,
no. 2, pp. 68-76, Feb. 2002.

[36] B. Falsafi and D. Wood, “Modeling Cost/Performance of a Parallel
Computer Simulator,” ACM Trans. Modeling and Computer
Simulation, vol. 7, no. 1, pp. 104-130, Jan. 1997.

[37] http://www.cs.wisc.edu/gems, 2006.

[38] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M.
Heinrich, “FLASH vs. (Simulated) FLASH: Closing the Simulation
Loop,” Proc. Int’l Conf. Architectural Support for Programming
Languages and Operating Systems, 2000.

[39] S. Girbal, G. Mouchard, A. Cohen, and O. Temam, “DiST A
Simple, Reliable, and Scalable Method to Significantly Reduce
Processor Architecture Simulation Time,” Proc. Joint Int’l Conf.
Measurement and Modeling of Computer Systems, 2003.

[40] I. Gómez, L. Pifiuel, M. Prieto, and F. Tirado, “Analysis of
Simulation-Adapted SPEC 2000 Benchmarks,” Computer Architec-
ture News, vol. 30, no. 4, pp. 4-10, Sept. 2002.

[41] J.L. Gustafson and Q.O. Snell, “HINT: A New Way to Measure
Computer Performance,” Proc. Hawaii Int’l Conf. System Sciences,
1995.

[42] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R.
Brown, “MiBench: A Free, Commercially Representative Em-
bedded Benchmark Suite,” Proc. Workshop Workload Characteriza-
tion, 2001.

[43] J. Haskins Jr. and K. Skadron, “Minimal Subset Evaluation: Rapid
Warm-up for Simulated Hardware State,” Proc. Int’l Conf.
Computer Design, 2001.

[44] J. Haskins Jr. and K. Skadron, “Memory Reference Reuse Latency:
Accelerated Sampled Microarchitecture Simulation,” Proc. Int’l
Symp. Performance Analysis of Systems and Software, 2003.

[45] J. Henning, “SPEC CPU2000: Measuring CPU Performance in the
New Millennium,” Computer, vol. 33, no. 7, pp. 28-35, July 2000.

[46] C. Hughes, V. Pai, P. Ranganathan, and S. Adve, “Rsim:
Simulating Shared-Memory Multiprocessors with ILP Proces-
sors,” Computer, vol. 35, no. 2, pp. 40-49, Feb. 2002.

[47] V. Iyengar, L. Trevillyan, and P. Bose, “Representative Traces for
Processor Models with Infinite Cache,” Proc. Int’l Symp. High-
Performance Computer Architecture, 1996.

[48] http://www.epcc.ed.ac.uk/javagrande/index_1.html, 2006.
[49] L. Kurian John, “Benchmarks,” (draft) Modern Simulation and

Analysis Techniques, L. Kurian John and L. Eeckhout, eds., CRC
Press, to be published.

[50] L. Kurian John, “Performance Modeling and Measurement
Techniques,” (draft) Modern Simulation and Analysis Techniques,
L. Kurian John and L. Eeckhout, eds., CRC Press, to be published.

[51] R. Kessler, M. Hill, and D. Wood, “A Comparison of Trace-
Sampling Techniques for Multi-Megabyte Caches,” IEEE Trans.
Computers, vol. 43, no. 6, pp. 664-675, June 1994.

[52] H. Khalid, “Validating Trace-Driven Microarchitectural Simula-
tions,” IEEE Micro, vol. 20, no. 6, pp. 76-82, Nov./Dec. 2000.

[53] A. KleinOsowski and D. Lilja, “MinneSPEC: A New SPEC
Benchmark Workload for Simulation-Based Computer Architec-
ture Research,” Computer Architecture Letters, vol. 1, June 2002.

[54] V. Kirshnan and J. Torrellas, “A Direct-Execution Framework for
Fast and Accurate Simulation of Superscalar Processor,” Proc. Int’l
Conf. Parallel Architectures and Compilation Techniques, 1998.

[55] T. Lafage and A. Seznec, “Choosing Representative Slices of
Program Execution for Microarchitecture Simulations: A Pre-
liminary Application to the Data Stream,” Proc. Workshop Workload
Characterization, 2000.

[56] S. Laha, J. Patel, and R. Iyer, “Accurate Low-Cost Methods for
Performance Evaluation of Cache Memory Systems,” IEEE Trans.
Computers, vol. 37, no. 11, pp. 1325-1336, Nov. 1988.

[57] E. Larson, S. Chatterjee, and T. Austin, “MASE: A Novel
Infrastructure for Detailed Microarchitectural Modeling,” Proc.
Int’l Symp. Performance Analysis of Systems and Software, 2001.

[58] J. Lau, S. Schoenmackers, and B. Calder, “Structures for Phase
Classification,” Proc. Int’l Symp. Performance Analysis of Systems and
Software, 2004.

[59] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder,
“Motivation for Variable Length Intervals and Hierarchical Phase
Behavior,” Proc. Int’l Symp. Performance Analysis of Systems and
Software, 2005.

278 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

[60] G. Lauterbach, “Accelerating Architectural Simulation by Parallel
Execution of Trace Samples,” Sun Microsystems Laboratory
Technical Report TR-93-22, 1993.

[61] B. Lee and L. Kurian John, “NpBench: A Benchmark Suite for
Control Plane and Data Plane Applications for Network Proces-
sors,” Proc. Int’l Conf. Computer Design, 2003.

[62] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Commu-
nication Systems,” Proc. Int’l Symp. Microarchitecture, 1997.

[63] D. Lilja, Measuring Computer Performance: A Practitioner’s Guide.
Cambridge Univ. Press, 2000.

[64] W. Liu and M. Huang, “EXPERT: Expedited Simulation Exploit-
ing Program Behavior Repetition,” Proc. Int’l Conf. Supercomputing,
2004.

[65] http://www.bitmover.com/lm/lmbench, 2006.
[66] Y. Luo and L. Kurian John, “Efficiently Evaluating Speedup Using

Sampled Processor Simulation,” Computer Architecture Letters,
vol. 3, Sept. 2004.

[67] Y. Luo, L. Kurian John, and L. Eeckhout, “Self-Monitored
Adaptive Cache Warm-Up for Microprocessor Simulation,” Proc.
Symp. Computer Architecture and High Performance Computing, 2004.

[68] http://m5.eecs.umich.edu, 2006.
[69] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G.

Halberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner,
“Simics: A Full System Simulation Platform,” Computer, vol. 35,
no. 2, pp. 50-58, Feb. 2002.

[70] N. Manjikian, “Multiprocessor Enhancements of the SimpleScalar
Tool Set,” Computer Architecture News, vol. 29, no. 1, pp. 8-15, Mar.
2001.

[71] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A.
Alameldeen, K. Moore, M. Hill, and D. Wood, “Multifacet’s
General Execution-Driven Multiprocessor Simulator (GEMS)
Toolset,” Computer Architecture News, submitted.

[72] J. Mathew, P. Coddington, and K. Hawick, “Analysis and
Development of the Java Grande Benchmarks,” Proc. Java Grande
Conf., 1999.

[73] C. Mauer, M. Hill, and D. Wood, “Full-System Timing-First
Simulation,” Proc. SIGMETRICS, 2002.

[74] G. Memik, W. Mangione-Smith, and W. Hu, “NetBench: A
Benchmarking Suite for Network Processors,” Proc. Int’l Conf.
Computer Aided Design, 2001.

[75] G. Memik, W. Mangione-Smith, and W. Hu, “NetBench: A
Benchmarking Suite for Network Processors,” Proc. Int’l Conf.
Computer-Aided Design (ICCAD), 2001.

[76] P. Mishra, N. Dutt, and A. Nicolau, “Functional Abstraction
Design Space Exploration of Heterogeneous Programmable
Architectures,” Proc. Int’l Symp. System Synthesis, 2001.

[77] M. Moudgill, “Techniques for Fast Simulation of Associative
Cache Directories,” IBM Research Report RC21038, 1997.

[78] M. Moudgill, “Techniques for Implementing Fast Processor
Simulators,” Proc. Ann. Simulation Symp., 1998.

[79] M. Moudgill, P. Bose, and J. Moreno, “Validation of Turandot, a
Fast Processor Model for Microarchitecture Exploration,” Proc.
Int’l Performance, Computing, and Comm. Conf., 1999.

[80] S. Murkerjee, S. Reinhardt, B. Falsafi, M. Litzkow, S. Huss-
Lederman, M. Hill, J. Larus, and D. Wood, “Fast and Portable
Parallel Architecture Simulators: Wisconsin Wind Tunnel II,”
IEEE Concurrency, vol. 8, no. 4, pp. 12-20, Oct.-Dec. 2000.

[81] http://www.nas.nasa.gov/Software/NPB, 2006.
[82] A. Nguyen, M. Michael, A. Sharma, and J. Torrellas, “The

Augmint Multiprocessor Simulation Toolkit for Intel x86 Archi-
tectures,” Proc. Int’l Conf. Computer Design, 1996.

[83] A. Nguyen, P. Bose, K. Ekanadham, A. Nanda, and M. Michael,
“Accuracy and Speed-Up of Parallel Trace-Driven Architectural
Simulation,” Proc. Int’l Parallel Processing Symp., 1997.

[84] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr, “LISA—Ma-
chine Description Language for Cycle-Accurate Models of
Programmable DSP Architectures,” Proc. Design Automation Conf.,
1999.

[85] D. Penry and D. August, “Optimizations for a Simulator
Construction System Supporting Reusable Components,” Proc.
Design Automation Conf., 2003.

[86] E. Perelman, G. Hamerly, and B. Calder, “Picking Statistically
Valid and Early Simulation Points,” Proc. Int’l Conf. Parallel
Architectures and Compilation Techniques, 2003.

[87] D. Perez, G. Mouchard, and O. Temam, “MicroLib: A Case for
Quantitative Comparison of Microarchitecture Mechanisms,”
Proc. Int’l Symp. Microarchitecture, 2004.

[88] A. Phansalkar, A. Joshi, L. Eeckhout, and L. John, “Measuring
Program Similarity: Experiments with SPEC CPU Benchmark
Suites,” Proc. Int’l Symp. Performance Analysis of Systems and
Software, 2005.

[89] D. Poulsen and P. Yew, “Execution-Driven Tools for Parallel
Simulation of Parallel Architectures and Applications,” Proc.
Supercomputing, 1993.

[90] http://www.eecs.umich.edu/panalyzer, 2006.
[91] http://eda.ee.ucla.edu/PowerImpact, 2006.
[92] J. Ringenberg, C. Pelosi, D. Oehmke, and T. Mudge, “Intrinistic

Checkpointing: A Methodology for Decreasing Simulation Time
through Binary Modification,” Proc. Int’l Symp. Performance
Analysis of Systems and Software, 2005.

[93] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta, “Complete
Computer Simulation: The SimOS Approach,” Parallel and
Distributed Technology, vol. 3, no. 4, pp. 35-43, Winter 1995.

[94] M. Rosenblum, E. Bugnion, S. Devine, and S. Herrod, “Using the
SimOS Machine Simulator to Study Complex Computer Systems,”
Trans. Modeling and Computer Simulation, vol. 7, no. 1, pp. 78-103,
Jan. 1997.

[95] http://rsim.cs.uiuc.edu/distribution, 2006.
[96] E. Schnarr and J. Larus, “Fast Out-of-Order Processor Simulation

Using Memoization,” Proc. Int’l Conf. Architectural Support for
Programming Languages and Operating Systems, 1998.

[97] http://math.nist.gov/scimark2, 2006.
[98] H. Shafi, P. Bohrer, J. Phelan, C. Rusu, and J. Peterson, “Design

and Validation of a Performance and Power Simulator for
PowerPC Systems,” IBM J. Research and Development, vol. 47,
nos. 5/6, pp. 641-651, Sept./Nov. 2003.

[99] T. Sherwood, E. Perelman, and B. Calder, “”Basic Block Distribu-
tion Analysis to Find Periodic Behavior and Simulation Points in
Applications,” Proc. Int’l Conf. Parallel Architectures and Compilation
Techniques, 2001.

[100] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Auto-
matically Characterizing Large Scale Program Behavior,” Proc.
Int’l Conf. Architectural Support for Programming Languages and
Operating Systems, 2002.

[101] http://research.compaq.com/wrl/projects/SimOS/SimOs.html,
2004.

[102] http://www.research.ibm.com/arl/projects/SimOSppc.html,
2006.

[103] J. Singh, W. Weber, and A. Gupta, “SPLASH: The Stanford
ParalleL Application for SHared Memory,” Computer Architecture
News, vol. 20, no. 1, pp. 5-44, 1992.

[104] K. Skadron, P. Ahuja, M. Martonosi, and D. Clark, “Branch
Prediction, Instruction-Window Size, and Cache Size: Perfor-
mance Trade-Offs and Simulation Techniques,” IEEE Trans.
Computers, vol. 48, no. 11, pp. 1260-1281, Nov. 1999.

[105] http://www.spec.org/benchmarks.html, 2006.
[106] http://www.spec.org/hpg, 2006.
[107] http://www.specbench.org/jbb2000, 2006.
[108] http://www.specbench.org/jvm98, 2006.
[109] http://www.futuremark.com/products/sysmark2004, 2006.
[110] http://www.tpc.org, 2006.
[111] M. Vachharajani, N. Vachharajani, D. Penry, J. Blome, and D.

August, “Microarchitectural Exploration with Liberty,” Proc. Int’l
Symp. Microarchitecture, 2002.

[112] M. Vachharajani, N. Vachharajani, D. Penry, J. Blome, and D.
August, “The Liberty Simulation Environment, Version 1.0,”
Performance Evaluation Review: Special Issue on Tools for Architecture
Research, vol. 31, no. 4, Mar. 2004.

[113] M. Vachharajani, N. Vachharajani, and D. August, “The Liberty
Structural Specification Language: A High-Level Modeling Lan-
guage for Component Reuse,” Proc. Conf. Programming Language
Design and Implementation, 2004.

[114] M. Van Biesbrouck, T. Sherwood, and B. Calder, “A Co-Phase
Matrix to Guide Simultaneous Multithreading Simulation,” Proc.
Int’l Symp. Performance Analysis of Systems and Software, 2004.

[115] M. Van Biesbrouck, L. Eeckhout, and B. Calder, “Efficient
Sampling Startup for Sampled Processor Simulation,” Proc. Int’l
Conf. High Performance Embedded Architectures and Compilers, 2005.

[116] H. Vandierendonck and K. De Bosschere, “Eccentric and Fragile
Benchmarks,” Proc. Int’l Symp. Performance Analysis of Systems and
Software, 2004.

YI AND LILJA: SIMULATION OF COMPUTER ARCHITECTURES: SIMULATORS, BENCHMARKS, METHODOLOGIES, AND ... 279

[117] H. Vandierendonck and K. De Bosschere, “Experiments with
Subsetting Benchmark Suites,” Proc. Workshop Workload Character-
ization, 2004.

[118] J. Veenstra and R. Fowler, “MINT: A Front End for Efficient
Simulation of Shared-Memory Multiprocessors,” Proc. Int’l Work-
shop Modeling, Analysis, and Simulation on Computer and Telecomm.
Systems, 1994.

[119] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, and W. Ye,
“Energy-Driven Integrated Hardware-Software Optimizations
Using SimplePower,” Proc. Int’l Symp. Computer Architecture, 2000.

[120] “Introduction to the Simics Full-System Simulator without
Equal,”Virtutech White Paper, 2002.

[121] http://www.volano.com/benchmarks.html, 2006.
[122] W. Wang and J. Baer, “Efficient Trace-Driven Simulation Methods

for Cache Performance Analysis,” ACM Trans. Computer Systems,
vol. 9, no. 3, pp. 222-241, Aug. 1991.

[123] R. Weicker, “An Overview of Common Benchmarks,” Computer,
vol. 23, no. 12, pp. 65-75, Dec. 1990.

[124] A. Weiss, “The Standardization of Embedded Benchmarking:
Pitfalls and Opportunities,” Proc. Int’l Conf. Computer Design, 1999.

[125] T. Wenisch, R. Wunderlich, B. Falsafi, and J. Hoe,
“TurboSMARTS: Accurate Microarchitecture Simulation Sam-
pling in Minutes,” Poster at the Int’l Conf. Measurement and
Modeling of Computer Systems, 2005.

[126] E. Witchel and M. Rosenblum, “Embra: Fast and Flexible Machine
Simulation,” Proc. Joint Conf. Measurement and Modeling of
Computer Systems, 1996.

[127] T. Wolf and M. Franklin, “Commbench—A Telecommunications
Benchmark for Network Processors,” Proc. Int’l Symp. Performance
Analysis of Systems and Software, 2000.

[128] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Con-
siderations,” Proc. Int’l Symp. Computer Architecture, 1995.

[129] D. Wood, M. Hill, and R. Kessler, “A Model for Estimating Trace-
Sample Miss Ratios,” Proc. Conf. Measurement and Modeling of
Computer Systems, 1991.

[130] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe, “SMARTS:
Accelerating Microarchitectural Simulation via Rigorous Statisti-
cal Sampling,” Proc. Int’l Symp. Computer Architecture, 2003.

[131] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe, “An Evaluation
of Stratified Sampling of Microarchitecture Simulations,” Proc.
Workshop Duplicating, Deconstructing, and Debunking, 2004.

[132] J. Yi, D. Lilja, and D. Hawkins, “A Statistically-Rigorous Approach
for Improving Simulation Methodology,” Proc. Int’l Symp. High-
Performance Computer Architecture, 2003.

[133] J. Yi, S. Kodakara, R. Sendag, D. Lilja, and D. Hawkins,
“Characterizing and Comparing Prevailing Simulation Methodol-
ogies,” Proc. Int’l Symp. High-Performance Computer Architecture,
2005.

Joshua J. Yi received the PhD, MS, and BS
degrees, all in electrical engineering, from the
University of Minnesota in Minneapolis. He is
currently a performance analyst at Freescale
Semiconductor, Inc. in Austin, Texas. His
research interests include high-performance
computer architecture, simulation, benchmark-
ing, low power design, and reliable computing.
He is a member of the IEEE and the IEEE
Computer Society.

David J. Lilja received the PhD and MS
degrees, both in electrical engineering, from
the University of Illinois at Urbana-Champaign
and the BS degree in computer engineering from
Iowa State University. He is currently a profes-
sor of electrical and computer engineering and a
fellow of the Minnesota Supercomputing Insti-
tute at the University of Minnesota in Minnea-
polis. He also serves as a member of the
graduate faculties in computer science and

scientific computation. He has been a visiting senior engineer in the
Hardware Performance Analysis Group at IBM in Rochester, Minnesota,
and a visiting professor at the University of Western Australia in Perth,
supported by a Fulbright award. Previously, he worked as a research
assistant at the Center for Supercomputing Research and Development
at the University of Illinois and as a development engineer at Tandem
Computers Inc. (now, a division of Hewlett-Packard) in Cupertino,
California. He has chaired and served on the program committees of
numerous conferences, was a distinguished visitor of the IEEE
Computer Society, is a member of the ACM, the IEEE Computer
Society, a fellow of the IEEE, and is a registered professional engineer in
electrical engineering in Minnesota and California. His primary research
interests are in high-performance computer architecture, parallel
computing, hardware-software interactions, nano-computing, and per-
formance analysis.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

280 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

