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Abstract—Due to the long simulation time of the reference input set, computer architects often use reduced time simulation
techniques to shorten the simulation time. However, what has not yet been thoroughly evaluated is the accuracy of these techniques
relative to the reference input set and with respect to each other. To rectify this deficiency, this paper uses three methods to
characterize reduced input set, truncated execution, and sampling-based simulation techniques while also examining their speed
versus accuracy trade-off and configuration dependence. Our results show that the three sampling-based techniques, SimPoint,
SMARTS, and random sampling, have the best accuracy, the best speed versus accuracy trade-off, and the least configuration
dependence. On the other hand, the reduced input set and truncated execution simulation techniques had generally poor accuracy,
were not significantly faster than the sampling-based techniques, and were severely configuration dependent. The final contribution of
this paper is a decision tree, which can help architects choose the most appropriate technique for their simulations.

Index Terms—Modeling of computer architecture, measurement techniques, modeling techniques.

1 INTRODUCTION

THE SPEC CPU2000 benchmark suite [12] is a commonly
used suite for simulation-based computer architecture
research and the largest input set for each benchmark is the
reference input set. Although this input set typically
yields the most realistic behavior, due to its very long
simulation time, architects rarely simulate it to completion.

Since lengthy simulation times preclude a detailed
exploration of the design space, architects resort to
alternative simulation techniques to reduce the simulation
time. These techniques include reducing the size of the
input set, simulating a single piece of the program that
ostensibly represents the whole program, and sampling.
Although these techniques reduce the simulation time,
what is not clear is how the characteristics and the accuracy
of each technique compare to the reference input set and
to each other. Without thoroughly understanding the effects
that these techniques can have on the results, the validity of
those results is suspect, which nullifies the point of
performing the simulations in the first place.
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To address this issue, this paper evaluates the accuracy
of the seven most prevalent techniques with respect to the
reference input set by characterizing them using three
different methods. The seven techniques are

SimPoint [17],

SMARTS [18],

random sampling [4],

reduced input sets (MinneSPEC [13] and SPEC test

and train),

simulating the first Z million instructions only,

6. fast-forwarding X million instructions and then
simulating the next z million, and

7. fast-forwarding X million, warming up the processor

for the next Y million, and then simulating the next z

million instructions.

L=

The three methods that we used to characterize these seven
techniques are the 1) processor bottleneck, 2) execution
profile, and 3) architectural-level characterizations. We then
analyze each technique from three additional perspectives,
namely, their speed versus accuracy trade-off (SVvAT), the
potential configuration dependence, and the fidelity of their
performance bottlenecks. Finally, based on the results of
these characterization methods and analyses, we present a
decision tree that architects can use to determine the

technique that best suits their situation.
The remainder of this paper is organized as follows:

Section 2 describes the problem in addition to describing
each of the seven techniques. Sections 3 and 4 describe the
experimental framework and characterization methods,
respectively, while Sections 5 and 6 present the results.
Section 7 describes some related work, Section 8 makes
specific recommendations about simulation methodology
and Section 9 summarizes the paper.
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2 PREVAILING SIMULATION TECHNIQUES

To reduce the simulation time to a tractable level, computer
architects typically use several techniques to approximate
the behavior of the reference input set. These techniques
fall into three categories: 1) reduced input sets, 2) truncated
execution, and 3) sampling.

Reduced input sets. The basic idea behind reduced input
sets is to modify the reference input set in some way to
reduce the simulation time when using the modified input
set. The hope is that the reduced input set still retains the
characteristics of the reference input set, but with a lower
simulation time. The primary advantage of using reduced
input sets is that the entire behavior of the program is
simulated in detail, including initialization, the main body
of the computation, and cleanup. The main disadvantage is
that their results may be very dissimilar compared to those
produced by the reference input sets. In addition,
developing reduced input sets can be a very tedious and
time-consuming undertaking. Examples of the SPEC 2000
reduced input sets include the test and train input sets
from SPEC and the MinneSPEC small, medium, and
large reduced input sets [13].

Truncated execution. In truncated execution, the architect
simulates the benchmark for a fixed number of instructions
while presuming that that arbitrary interval is representa-
tive of the entire program. There are three primary
variations. In the simplest case, which we call Run Z, only
the first Z million instructions of the benchmark are
simulated using the reference input set, where the value
of Z determines the simulation time. A variation on this idea
is to fast-forward through the first X million instructions and
then switch to detailed simulation for the next Z million (that
is, Fast-Forward X + Run z (FF X + Run 2)). This technique
potentially improves on Run Z by skipping over the less
interesting aspects of the program. One problem with the
FF X+ Run Z technique is that, after fast-forwarding, the
processor and memory states are “cold” (thatis, invalid). The
solution to this problem is to “warm up” the processor and
memory before starting detailed simulation. One simple
implementation is to perform detailed simulation for Y + Z
million instructions after fast-forwarding, while tracking the
simulation statistics for only the last Z million. We refer to this
technique as Fast-Forward X + Warm Up Y + Run z (FF X +
WU Y + Run 2z).

Sampling. Population sampling is a statistical technique
that is used to infer the characteristics of the population by
extrapolating from the characteristics observed in a subset.
The key to good results with population sampling is to
ensure that the chosen subset accurately reflects the overall
population. Computer architects have proposed using
representative, periodic, and random sampling as the basis
for reduced time simulation techniques.

Representative sampling attempts to extract from a bench-
mark a subset of its dynamic instructions that matches its
overall behavior when using the reference input set.
With the SimPoint [17] technique, for example, a relatively
small number of simulation points are chosen to be the
representative of the behavior of the entire program.
Determining the simulation points first involves profiling
the benchmark to identify the candidate simulation points
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and then using machine-learning-based clustering to select
a set that is representative of the entire program. After
simulation, the results from each simulation point are
weighted to compute the final simulation results. The
number of simulation points and the length of each
determine the overall simulation time.

By contrast, periodic sampling simulates selected portions
of the dynamic instruction execution at fixed intervals:
SMARTS [18] is a recent example. The sampling frequency
and the length of each sampling unit are used to control the
overall simulation time. To improve its accuracy, SMARTS
uses a statistical sampling theory to estimate the CPI error
of the sampled simulation versus the reference simula-
tion. If the estimated error is higher than the user-specified
confidence interval, then SMARTS recommends a higher
sampling frequency. SMARTS also uses “functional warm-
ing” to maintain the branch predictor and cache state
between sampling units.

Finally, in random sampling, the simulation results from
N randomly chosen and distributed intervals are combined
together to produce the overall simulation results. To
reduce the error associated with random sampling, Conte
et al. [4] suggested increasing the number of instructions
dedicated to processor warm-up before each sampling unit
and/or increasing the number of sampling units.

Prevalence of simulation techniques. In addition to simulat-
ing the reference input set to completion and the above
techniques, a multiplicity of additional permutations exist.
For obvious reasons, quantifying the accuracy of all
permutations is infeasible. Therefore, to determine the set
of techniques to analyze in this paper, we examined the
proceedings for HPCA, ISCA, and MICRO from 1994 to 2003
to determine the most prevalent techniques. Our results show
that the four most popular techniques are F'F X+ Run Z
(27.3 percent of all known techniques), Run Z (23.1 percent),
reduced input sets (18.5 percent), and simulating the bench-
mark to completion (17.8 percent). Since these four techni-
ques account for almost 90 percent of all known techniques,
we included these four techniques in the set of candidate
techniques studied in this paper. We also included FF X +
WU Y +Run Z since it is a more accurate version of
FF X + Run Z, SimPoint and SMARTS since they are likely
to increase in popularity, and, although it was rarely used,
random sampling since it makes for an interesting compar-
ison to the other sampling-based techniques.

Table 1 shows our final list of the 81 permutations of the
candidate techniques. For the truncated execution techni-
ques, the values of X, Y, and Z were based on the superset of
common permutations that we found in our survey,
whereas the specific values for the sampling-based techni-
ques were based on those in [11] for SimPoint, [18], [19] for
SMARTS, and [4], [5], [6] for random sampling. (To
facilitate the comparison of SMARTS and random sam-
pling, the values for random sampling were set to SMARTS-
like values.)

For random sampling, the number of instructions
between sampling units was randomly chosen from a range
of values (either 10*U to 10,000*U or 10*U to 100,000*U,
where U is the number of instructions in each sampling
unit) and where there is an equal likelihood of choosing any
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TABLE 1
Configurations for the Simulation Techniques (X +Y Mod 100M = 0)
Number of
Permutations Technique Permutations
. . Single 100M, multiple 10M (max_K: 100), and 100M (max_K: 10)
SimPoint . . L . .
3 (Standard [17]) SimPoint 1.0, 7 Random Seeds (seedproj = 1), 100 iterations
Warm-Up: 1M for 10M and OM for 100M; assume cache hit [11]
Detailed simulation length per sampling unit (U): 100, 1000, 10000
Warm-up length per sampling unit (W): 200, 2000, 20000
2 SMARTS Initial number of sampling units (n): 10,000
Configuration: 99.7% confidence level, £3% confidence interval [18]
Detailed simulation length per sampling unit (U): 100, 1000, 10000
. Warm-up length per sampling unit (W): 100, 10000
12 Random Sampling | . oc of random periods (k): 10U to 10,000U (10K) and 10*U to 100,000*U (100K)
Results based on the average of 3 runs
3.5 Reduced MinneSPEC small, medium, large
SPEC test, train
4 Run z Z:  500M, 1000M, 1500M, 2000M
12 FFX+ X: 1000M, 2000M, 4000M
Run 2 z:  100M, 500M, 1000M, 2000M
FF X+ X:  999M, 1999M, 3999M; 990M, 1990M, 3990M, 900M, 1900M, 3900M
36 WU Y+ y: 1M; 10M, 100M
Run z Z: 100M, 500M, 1000M, 2000M
TABLE 2
SPEC 2000 Benchmarks and Input Sets
Benchmark small medium large test train reference
gzip smred.log mdred.log Igred.log test.combined train.combined ref.log
vpr-Place smred.net mdred.net N/A test.net train.net ref.net
vpr-Route small.arch.in small.arch.in small.arch.in train.arch.in ref.arch.in
gcc smred.c-iterate.i mdred.rtlanal.i N/A ccep.i cp-decl.i 166.i
art N/A N/A -startx 110
mcf smred.in N/A Igred.in test.in train.in ref.in
equake N/A N/A Igred.in test.in train.in ref.in
perlbmk smred.makerand mdred.makerand N/A N/A scrabbl diffmail
vortex smred.raw mdred.raw Igred.raw test.raw train.raw lendiani.raw
bzip2 N/A N/A Igred.source test.random train.compressed ref.source

value from the range. Each permutation was simulated
three times and the results were averaged across all three
simulations.

3 EXPERIMENTAL FRAMEWORK

In this paper, we used wat tch [2] as the base simulator. We
chose wattch as the base simulator because we originally
wanted to evaluate the performance and power accuracy of
each simulation technique. However, due to the fact that
there is less variation in the power results, the power
accuracy of all techniques was comparatively higher (and,
therefore, less interesting) than the performance results.
Consequently, due to space limitations, we do not present
those results. We modified wattch to include user-
configurable instruction execution latencies and through-
puts and a user-configurable warm-up. To implement
SMARTS, we added periodic sampling, functional warm-
ing, and statistical error estimation to wattch.

To characterize the accuracy of each technique, we used
a total of 56 different processor configurations. Since these
configurations are associated with a specific characteriza-
tion method, the configurations are listed in Sections 4.1
and 4.3, along with the characterization method.

The 10 benchmarks that were used in this study, shown in
Table 2 along with their input sets, were selected from the
SPEC 2000 benchmark suite because they are all written in C
and because these benchmarks represent the most popular
benchmarks that architects typically use [3]. The total
simulation time limited the number of benchmarks that we
could simulate. Even then, simulating the reference input
set and the 81 permutations in Table 1 for 56 processor
configurations and 10 benchmarks required the simulation of
over one quadrillion (10') detailed instructions, which
required approximately four years of constant simulation.
All benchmarks were compiled at optimization level O3 by
using SimpleScalar’s version of the gcc compiler ver-
sion 2.6.3. With the exception of the reduced input sets, the
input set for all techniques was the reference input set or
one of the reference input sets in the case of gzip, gcc,
perlbmk, vortex, and bzip2.

4 DESCRIPTION OF THE CHARACTERIZATION
METHODS
To measure the accuracy of each technique, we used three

different characterization methods. Section 4 describes these
methods, while Section 5 presents the results of each.
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TABLE 3
Processor Configurations Used for the Architectural-Level Characterization
Parameter Config #1 | Config #2 Config #3 | Config #4
Decode, issue, commit width 4-way 8-way

Branch predictor, BHT entries Combined, 4K Combined, 8K Combined, 16K Combined, 32K

ROB/LSQ entries 32/16 64/32 128/64 256/128

Int/FP ALUs (Mult/div units) 2/2 (111) 4/4 (4/4) 6/6 (4/4) 8/8 (8/8)

L1 D-cache size (KB), assoc, lat (Cycles) 32, 2-way, 1 64, 4-way, 1 128, 2-way, 1 256, 4-way, 1

L2 cache size (KB), assoc, lat (Cycles) 256, 4-way, 10 512, 8-way, 7 1024, 4-way, 15 2048, 8-way, 12

Memory lat (Cycles): First, following 150, 10 100, 5 300, 20 200, 10

4.1 Processor Bottleneck Characterization

The first characterization method is a performance bottle-
neck analysis using a Plackett and Burman (PB) design [16].
For architects, the PB design can determine which processor
and memory parameters have the largest effect on the
performance of the processor, that is, the biggest perfor-
mance bottlenecks. The output of a PB design is a value that
is associated with each input parameter (bottleneck). The
magnitude of this number represents the effect that that
parameter has on the variability in the output value, for
example, number of cycles. The parameters with the largest
PB magnitudes have the largest effect on the number of
cycles and represent the largest performance bottlenecks in
the processor and memory subsystem.

After calculating the effect that each parameter has
on the CPI, we rank the parameters based on their
PB magnitudes (1 =largest magnitude) and then vectorize the
ranks. To determine the similarity in the performance
bottlenecks of the reference input set and each technique,
we calculate the euclidean distance between their rank
vectors. Therefore, the technique that has the smallest
euclidean distance is the one that is the most accurate, that
is, has the set of performance bottlenecks that is most similar
to those of the reference input set. (It is important to note
that we verified that using ranks did not significantly distort
the results as compared to using the PB magnitudes. Rather,
using ranks prevented some bottlenecks from dominating the
results, which allowed fewer significant bottlenecks to have
some limited effect. The reason that we chose ranks over the
PB magnitudes was because comparison of ranks is more
straightforward and intuitive.)

Finally, our set of processor and memory parameter
values is similar to those found in [20].

4.2 Execution-Profile Characterization

If the PB design is a hardware-level characterization, then its
software-level counterpart is the basic block characterization.
We characterize the basic blocks based on their execution
frequencies (BBEF) and their instruction counts (BBV in
SimPoint terminology). In this paper, we define a basic block
to be the group of instructions between a branch target (taken
or not taken) up to the next branch. The BBEF is simply the
number of times that each basic block is executed. By
comparing the BBEF profiles for the reference input set
and each technique, we can determine how accurate that
technique is in terms of code coverage. The BBV is similar to
BBEF except that, instead of incrementing the count by one
each time a basic block executes, we increment that basic
block’s counter by the number of instructions that were

executed in that instance of that basic block, which factors
in the number of instructions in each basic block.

We use a y? test [14] to compare the distributions of the
reference input set and each technique. If the x* test
value is smaller than the x? statistic, then the two
distributions are considered to be statistically similar. We
also use the x? test value as a measure of the distance
between the two distributions: Similar distributions will
have a very small x” test value.

4.3 Architectural-Level Characterization

The last characterization method that we used to compare
techniques is at the architectural level. We first vectorize a
set of metrics—instructions per cycle (IPC), branch predic-
tion accuracy, level-1 (L1) D-cache hit rate, L1 I-cache hit
rate, and level-2 (L2) cache hit rate—after normalizing each
metric to its maximum possible value to allow for cross-
metric comparisons and then calculate its euclidean
distance from the reference input set. We included this
characterization since these metrics are often used by
architects to evaluate their enhancements. However, the
principal deficiency of using architectural-level metrics is
that, since they average the effect of all factors over time to
produce a single number, the effects of larger interactions
may counterbalance each other while obscuring the effects
of lower order interactions. Table 3 lists the key parameter
values for the four configurations used for the architectural-
level characterization. These parameter values were chosen
based on a survey of several commercial processors.

5 RESULTS OF CHARACTERIZATION METHODS

The next two sections present the results of our analysis of
the accuracy and simulation speed for the seven techniques
that were described in Section 2. Section 5 presents the
results for the three characterization methods that were
described in Section 4, while Section 6 quantifies the SVAT
and the potential configuration dependence that each of
these techniques have.

5.1 Processor Bottleneck Characterization Results
and Analysis
Since the number of elements in each vector of ranks is 43
and since the value of each element is a number between 1
and 43, the maximum euclidean distance between two
vectors occurs when the ranks for the two vectors are
completely “out of phase,” that is, < 43,42,41,...3,2,1 >
versus < 1,2,3,...41,42,43 > ). This distance is 162.75.
Fig. 1 presents the average (mean) euclidean distance away
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Fig. 1. The normalized euclidean distance away from the reference input set for each type of simulation technique for the performance bottleneck
characterization. For each technique, the average distance across all permutations is shown, along with the minimum and maximum distance (error

bars).
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Fig. 2. Difference in the SimPoint and SMARTS euclidean distances in ascending order of reference rank.

from the reference input set across all permutations for
each technique, which is normalized to the maximum
distance and scaled to 100.

Across all benchmarks, the accuracy of the reduced input
sets varies significantly. In general, the poor accuracy (large
euclidean distance) of the reduced input sets is due to two
reasons. First, especially in the case of mcf, the percentage of
cycles due to cache misses serviced by main memory is
much larger for the reference input set than in any of the
reduced input sets. Consequently, we expect (and find) that
the reduced input sets tend to underestimate the rank of the
memory-hierarchy-related bottlenecks. For example, in gcc,
the rank of the memory latency for the reference input
set is 3, whereas its rank for the SPEC test reduced input
set is 41. Second, our results for the basic block analysis,
presented in Section 5.2, shows that the execution profiles of
the reduced input sets and the reference input set are
very different. In other words, using a reduced input set
effectively simulates a different program than when using
the reference input set.

With the exceptions of vpr-Place and art, the accuracy of
the truncated execution techniques is also quite poor.
Although the distances for FF X+ RunZ and FF X+
WU Y + Run Z are lower than the distances for Run z, the
reasons for the poor accuracy of these techniques are the
same. First, since computer architects choose the values of
X, Y, and Z arbitrarily, these three techniques end up
simulating a portion of the program that not only may be
uninteresting but may also not be representative of the

entire benchmark. Second, given the highly complex phase
behavior of some of these benchmarks (gcc is an excellent
example), simulating a few billion instructions, even after
fast-forwarding through a few billion instructions, does not
simulate enough phases of the program to elicit a similar set
of performance bottlenecks. However, increasing the period
of detailed simulation reduces the appeal of this class of
techniques by increasing its simulation time.

Of the three sampling-based simulation techniques,
SimPoint and SMARTS are significantly more accurate than
the reduced input set and truncated execution techniques,
whereas random sampling is generally more accurate. There-
fore, from a performance bottleneck point of view, the
sampling-based techniques have performance bottlenecks
that are more similar to the performance bottlenecks induced
by the reference input set. Overall, SMARTS is slightly
more accurate than SimPoint since, for six of the 10 bench-
marks, the minimum distance for SMARTS is lower than the
minimum distance for SimPoint (in terms of the average
distance, SMARTS is smaller for five benchmarks), whereas
both are more accurate than random sampling.

It is important to note that large differences in the ranks
for bottlenecks that are not significant can increase the
apparent distance for a technique. To examine if this is the
case, Fig. 2 shows the difference in the SimPoint and
SMARTS distances, each with respect to the reference
input set, that is,

||SimPoint — reference|| — ||[SMARTS — reference||,
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whereas Fig. 3 shows the corresponding comparison
between random sampling and SMARTS. Both figures only
show the results for the most accurate (smallest euclidean
distance) permutation of each technique.

The bottlenecks along the z-axis are sorted in ascending
order (the most significant to the least significant) of the
reference input set rank for each benchmark. Therefore, the
same rank in different benchmarks may correspond to
different bottlenecks. This plotting allows us to examine the
effect of each bottleneck in decreasing order of significance
in each benchmark. The difference in the distances for
bottleneck N is the difference in the distances when only the
N most significant bottlenecks are included in the distance
calculations. Note that, since the most significant bottle-
necks are shown on the left-hand side, larger differences in
the euclidean distance on the left-hand side are more
significant than the same distance on the right-hand side.

Fig. 2 shows that, for all benchmarks except for gcc, there
is relatively little difference between the euclidean distances
for SimPoint and SMARTS, at least for the most significant
bottlenecks. Therefore, we conclude that, for these bench-
marks, with the exception of mcf, SMARTS is slightly more
accurate than SimPoint. For mcf, SimPoint is slightly more
accurate than SMARTS. For gcc, there is a difference in the
euclidean distances starting at bottleneck 3 (memory latency)
due to a combination of two factors. First, the warm-up
approach that we used in this paper (assuming cache hit for
each first cache way access) tends to overestimate the cache
hit rate, which makes the memory latency appear to be a less
significant performance bottleneck than it is. Note that this
problem is more severe for benchmarks with large numbers
of phases and that these results illustrate the importance of
using accurate warm-up techniques. Second, since gcc has a
very complex phase behavior and, for this specific SimPoint
configuration (multiple 10 M simulation points), phase
transitions are typically not chosen to be simulation points,
which subsequently underestimates the effect of the memory
latency. Increasing the maximum number of simulation
points, for example, using 1 M simulation points, with a
max_K of 300, can minimize this problem. Note, however,
that, although the absolute error may be significant, the
relative error of SimPoint is constant and relatively small [15].

For gcc, it is also important to reiterate that, although the
performance bottlenecks, taken as a whole, for SimPoint are
more similar to those of the reference input set than

those for SMARTS, this result is due to the fact that
SMARTS is not as accurate as SimPoint in estimating the
importance of less significant performance bottlenecks.

Fig. 3 confirms the conclusion that SMARTS is more
accurate than random sampling, with the possible excep-
tions of gcc and perlbmk. Although random sampling seems
to be more accurate than SMARTS for gcc, as was the case in
Fig. 2, the apparent inaccuracy of SMARTS is solely due to
less significant performance bottlenecks. For perlbmk, ran-
dom sampling more accurately estimates the importance of
the second, third, fourth, and fifth most significant
performance bottlenecks (ROB size, L2 cache latency, type
of branch predictor, that is, branch prediction accuracy, and
number of integer ALUs, respectively). However, since the
PB magnitudes of the second and third most significant
bottlenecks are very close (as are the PB magnitudes for the
fourth and fifth most significant bottlenecks), the difference
in euclidean distances is a little misleading due to the
quantization error incurred by using ranks. Nevertheless,
random sampling estimates the significance of these four
bottlenecks a little more accurately than SMARTS does.

In conclusion, the results in this section show that the
reduced input set and truncated execution techniques are
very inaccurate as compared to the results obtained by the
reference input set. By contrast, the three sampling-
based techniques—SMARTS, SimPoint, and random sam-
pling, in descending order of accuracy—are significantly
more accurate.

5.2 Execution-Profile Characterization Results and
Analysis

In this section, we examine how the seven reduced time
simulation techniques compare to the reference input set
when using the execution-profile characterization. Fig. 4
presents the results of this characterization. Due to space
limitations, since the results of the BBEF and BBV are virtually
identical, we discuss only the results of the BBEF character-
ization. Additionally, we also present the results for gzip, gcc,
mcf, and bzip2 only. Note, however, that the results of these
benchmarks are representative of the entire set.

As described in Section 2, if the variability in the CPI
between sampling units is too high, which depends on the
specific processor configuration being simulated, SMARTS
recommends a higher sampling frequency. However, since
the execution profile is independent of the processor
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Fig. 4. BBEF execution profile. Results are in terms of the x? distance. (a) gzip. (b) gcc. (c) mcf. (d) bzip2.

configuration, for SMARTS, we measure the execution
profile for several different initial sampling frequencies
(10,000, 20,000, and 30,000).

In the same vein, since the processor warm-up does not
affect the execution profile, we ignore the permutations that
differ only in their warm-up lengths. For example, for
SMARTS, U: 100, W: 200 versus U: 100, W: 2,000 versus
U: 100, W: 20,000, and FF 999M + WU 1M + Run 500M
versus FF 990M + WU 10M + Run 500M versus FF 900M +

WU 100M + Run 500M.

In Fig. 4, the y-axis corresponds to the X test value

between the basic block distribution of each simulation

technique and the corresponding distribution for the
reference input set. Therefore, if a technique has a very
similar execution profile (each basic block executes the
same fraction of the time), the x? distance will be very
small. Note that the scale of the y-axis is logarithmic.

The results in Fig. 4 show that the execution profiles of
the three sampling-based techniques are more similar to the
execution profile of the reference input set than the
reduced input set and truncated execution techniques. In
other words, the sampling-based techniques execute the
same basic blocks and at more similar frequencies than the
other four techniques.
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Fig. 5. Accuracy of architectural metrics in terms of their scaled normalized Manhattan distance for configuration 1.

Given the fact that the truncated execution techniques
execute a single, essentially random, interval of instructions,
it is not surprising to see that their execution profiles for
all benchmarks are extremely dissimilar as compared to
the execution profile of the reference input set. For a
similar reason, given that the reduced input sets may
simulate a totally different input than the reference input
set, it is also not surprising to find that their execution
profiles differ. However, for some benchmarks, if the
reduced input set is substantially similar to the reference
input set, then the execution profile of that reduced input
set may be very similar to that of the reference input set.
For example, the MinneSPEC reduced input sets of gzip are
simply a truncated version of the reference input set.

Of the three sampling-based techniques, SMARTS and
random sampling have execution profiles that are very
similar to the execution profile of the reference input set,
followed by SimPoint. The reason that SMARTS and
random sampling are more accurate than SimPoint from
an execution-profile point of view is that SimPoint does not
touch some basic blocks at all, whereas the probability of
touching a basic block with SMARTS and random sampling
is proportional to the frequency of the execution of each
block. This is the same reason that the X-10,000,000
permutation is more accurate than either the 1-100,000,000
or X-100,000,000 permutations. The X-10,000,000 permuta-
tion simply touches more basic blocks. Finally, the results
for SimPoint show that, although 1-100,000,000 does not
have a very similar execution profile, SimPoint is signifi-
cantly better at picking a single representative interval,
from a code perspective, as compared to truncated
execution.

Finally, the results show that, at a 95 percent confidence
level, the execution profiles of all permutations of the
reduced input sets and the truncated execution techniques
are statistically different from the execution profile of the
reference input set. This conclusion is not surprising
given the nature of these simulation techniques and the
results in the previous section.

On the other hand, the execution profiles of the three
sampling-based techniques are statistically similar to the
execution profile of the reference input set for most
permutations, especially for the ones that have the largest
number of sampling units, for example, X-10,000,000 for
SimPoint and U: 100 for SMARTS/random sampling.
Obviously, if a permutation of a sampling-based technique
has a larger number of sampling units, the sampling units

are more spread out across the benchmark, which makes it
more likely that all basic blocks will be touched at the
correct relative frequency.

(Due to improperly scaling the basic block vectors, our
previous work [21] showed that the execution profiles of all
techniques were statistically similar to that of the reference
input set. These new results correct that previous error.)

5.3 Architectural-Level Characterization Results
and Analysis

While the results in the previous two subsections quantified
the accuracy of each of the simulation techniques from a
performance bottleneck and execution-profile point of view,
what is more important is that each technique has similar
architectural-level metrics (IPC, branch prediction accuracy,
L1 D-cache hit rate, L2 cache hit rate, and L1 I-cache hit rate)
as the reference input set. More specifically, after
extracting the metrics, we

1. normalize the value of each metric to its maximum

value,

2. scale the normalized value to 100,

3. vectorize the scaled normalized values, and

4. compute the Manhattan distance between each

vector for each technique and the vector for the

reference input set.
Since there is no defined certain maximum for CPI, we use
IPC instead, which has a maximum value equal to the
issue/commit width. We use the Manhattan distance
instead of the euclidean distance because the difference in
the distance is equal to the difference in the scaled
normalized values of each metric.

Fig. 5 presents the architectural-level accuracy for each of
the reduced time simulation techniques for configuration 1.
The results for the other three configurations were similar.
The y-axis shows the scaled normalized Manhattan distance
between the vectors of architectural metrics for each
technique and the reference input set. The height of
each bar shows the average accuracy in terms of the
Manhattan distance for that technique, whereas the error
bars show the minimum and maximum distances.

The results in Fig. 5 are very similar to those in Fig. 1.
More specifically, Fig. 5 shows that the reduced input sets
and truncated execution techniques are not very accurate,
whereas the three sampling-based techniques are signifi-
cantly more accurate: SMARTS is the most accurate,
followed by SimPoint, and then random sampling. Note
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Fig. 6. Accuracy of each architectural metric in terms of their scaled normalized Manhattan distance for configuration 1 for mcf.

that the large error in the SimPoint results for gcc is due
solely to the higher-than-expected cache hits rates from
using the assume-cache-hit warm-up technique.

Fig. 6 shows the accuracy of each architectural metric for
the worst (left) and best (right) permutations of each
technique for mcf. A permutation was the worst (best) if it
had the largest (smallest) overall Manhattan distance. Note
that the height of each bar in Fig. 6 corresponds to the end
point location of the error bars for each technique in Fig. 5.

Fig. 6 shows that the poor accuracy of the reduced input
set and truncated execution techniques is largely due to
large differences in the L1 D-cache and L2 cache miss rates,
which, for this configuration with the reference input set,
are 30.2 percent and 63.1 percent, respectively. By contrast,
the corresponding miss rates of the small reduced input
set, for example, are 13.0 percent and 22.1 percent,
respectively. These results are not particularly surprising,
given that the reduced input set techniques do not simulate
enough instructions (and, therefore, do not generate enough
misses) and that the truncated execution techniques have
significantly smaller effective working set sizes.

On the other hand, the memory and, correspondingly,
overall behavior of the three sampling-based techniques are
significantly more similar to that of the reference input
set. Comparing the two random results, we see that the
difference between the worst and the best permutations is
only in the number of instructions in each sampling unit.
The improvement in the L2 cache hit rate distance is due to
the “self-warming” effect that the larger sampling unit has.

5.4 The Efficacy of the Characterization Methods

It is extremely important to note that, since these three
characterizations examine the accuracy of the seven
reduced time simulation techniques from three different
perspectives, the coherency of the results and conclusions
indicates that the accuracy of each technique is not merely a
side effect or construct of the specific characterization

method, but, rather, an intrinsic property of the technique.
Therefore, although the conclusions are the same for all
three characterizations, the coherency across all three
bolsters the validity of the conclusions and the efficacy of
the characterizations.

6 AN ANALYSIS OF THE SVAT AND POTENTIAL
CONFIGURATION DEPENDENCE

6.1 SvAT Analysis

Computer architects typically assume that increased simu-
lation speed comes at the cost of reduced simulation
accuracy such that the ideal technique minimizes the loss
of accuracy while maximizing the simulation speed.
Although accuracy is the preeminent characteristic, speed
emerges as an important consideration when the accuracies
of several techniques are similar.

To accurately determine the SVAT of these techniques,
for all seven techniques, we simulated their permutations
on the same machine to eliminate any differences in the
processor, memory subsystem, network, operating system,
and so forth. Although we ran each test case only once (due
to the number of simulations), since we simulated almost
50 processor configurations for each permutation, the
amount of experimental error was negligible. The processor
configurations represent the envelope of the hypercube of
potential configurations.

Fig. 7 presents the SvAT graphs for all benchmarks. Speed
and accuracy are on the z and y-axes, respectively. The speed
of a technique is simply the total simulation time of that
technique as a percentage of the total simulation time of the
referenceinputset, whereas the accuracy of that technique
is the Manhattan distance between the CPI vectors of the
technique and the reference input set. (We used the
Manhattan distance instead of the euclidean distance in this
analysis because it presented the results more clearly.) We
included the cost of generating simulation points (for
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SimPoint) and simulation checkpoints (for SimPoint and
the truncated execution techniques) into the simulation
speed. (Versions of SimPoint newer than SimPoint 1.0
dramatically reduce the time needed to determine the
simulation points, but were not available when we started
this study.) The costs of generating the reduced input sets

and the initial profiling of SMARTS were not included as
these costs were not quantified in [13] and [18], respec-
tively. However, for SMARTS, the simulation times of the
simulations that did not sample at a high enough frequency,
that is, the required additional simulations, were included
in the cost. (Across all benchmarks, the average number of
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Fig. 8. Configuration dependence: histogram of CPI error (relative to reference) for all benchmarks.

simulations for each SMARTS permutation ranged from
1.00 to 1.59, with a maximum of 6. Using slightly higher-
than-recommended sampling frequencies can reduce the
maximum number of simulations to about 3 [19].) Including
or excluding the costs of a technique merely moves/
stretches the technique’s lines right or left, respectively.
Finally, to reduce the clutter of each graph, we only present
the highest accuracy permutation of the SMARTS, random
sampling, FF X 4+ Run Z, and FF X+ WU Y 4 Run Z techni-
ques. The legend specifies the exact permutation for each
technique.

The first key conclusion that we draw from these figures
is that the SVAT of the reduced input set and the truncated
execution techniques is very poor. Not only is their
accuracy very poor, but also their poor accuracy is
compounded by simulation times that are either not
inversely proportional to their accuracy (that is, poor
accuracy and speed) or significantly higher than for the
other techniques. In particular, the train input set has the
worst SVAT since its accuracy ranks toward the bottom and
since its simulation time is significantly longer than any
other technique. Therefore, the reduced input set and
truncated execution techniques, from the dual viewpoints
of simulation accuracy and speed, do not offer any
advantages as compared to SimPoint, SMARTS, and
random sampling.

It is interesting to note that increasing the detailed
simulation period of the truncated execution techniques
does not automatically confer a higher accuracy, for
example, gcc and perlbmk. Rather, naively increasing the
simulation period can simultaneously decrease both the
simulation accuracy and speed.

Although the accuracy of SimPoint is not quite as good
as SMARTS, SimPoint has a better SVAT than SMARTS
does, even after including the cost of generating the
simulation points (which is zero if the architect uses those
found on the SimPoint Web page) and including the cost of
generating the checkpoints (the cost of which is amortized
by successive runs and can be decreased by picking early
simulation points [15]). Therefore, if the architect’s principal
concern is accuracy, then SMARTS is the most appropriate

technique. However, if the architect is willing to sacrifice a
little accuracy for an increased simulation speed (and who
is not, around deadline time), then SimPoint is the most
appropriate technique.

As shown in Section 5, the accuracy of random sampling
is slightly worse than the accuracy of SMARTS and
SimPoint, but, as shown in Fig. 7, its simulation speed is
typically between the simulation speeds of SimPoint and
SMARTS. Therefore, from the results in Fig. 5, we conclude
that the SVAT of random sampling is not as good as
SimPoint (due to slightly lower accuracy and speed) or
SMARTS (due to a significantly lower accuracy).

In summary, from the perspective of an SvAT, the best
techniques are, listed in descending order of their SVAT,
SimPoint, SMARTS, random sampling, FF X+ Run Z,
FFX+WUY+RunZ Run Z, and reduced input sets,
although there is a large separation between the three
sampling-based techniques and the others.

6.2 Potential Configuration Dependence

Another relevant consideration for computer architects is
how the accuracy of these techniques changes based on the
processor configuration. The absolute accuracy of the ideal
technique will remain constant across a broad range of
configurations. A predictable and stable accuracy allows
trends to emerge from the noise of error.

To quantify the magnitude of this potential problem, we
calculated the percentage error between the CPIs of each
technique and the reference input set and then deter-
mined the frequencies of the CPI error for all configura-
tions. A technique is configuration dependent when the
magnitude of the CPI error varies significantly across
configurations. Another way of quantifying the configura-
tion dependence is to calculate the standard deviation of the
CPI error. A high standard deviation means that the CPI
error is very different across configurations, which means
that that technique is configuration dependent. Fig. 8 shows
the percentage of configurations that fell into each range of
CPI errors for that specific permutation across all bench-
marks. For each technique, Fig. 8 shows the worst (left) and
best (right) permutations. A permutation was selected as
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the worst or best when it had the highest or lowest standard
deviation for its CPI error.

Fig. 8 shows four key results. First, even for the best
permutations, we conclude that the reduced input set and
truncated execution techniques have a significant config-
uration dependence because the CPI error is distributed
across multiple error ranges. Second, SMARTS has very
little, if any, configuration dependence since the CPI error
of most configurations falls into one error range, that is, the
0 percent to 3 percent one. Even for the worst permutation,
more than 75 percent of its configurations have a CPI value
that is within 3 percent of the CPI for the reference input
set. In the best permutation, this percentage climbs to
almost 98 percent, which is slightly less than the target of
99.7 percent of the configurations being within +3 percent
of the reference input set’s CPI [18]. Nevertheless, given
the “extreme” nature of the configurations, that is, they
represent configurations at the envelope of the hypercube of
potential configurations and, in essence, constitute a “stress
test” for the reduced time simulation techniques, we
conclude that SMARTS has virtually no configuration
dependence. Third, for SimPoint, in the worst permutation,
there is a significant configuration dependence that largely
disappears in the best permutation. However, even in the
best permutation, the percentage of configurations for
which the CPI error is greater than 3 percent is lower than
the best case for SMARTS. Fourth and finally, like SimPoint,
random sampling has a significant configuration depen-
dence for the worst permutation, which clearly diminishes
for the best permutation. However, overall, random
sampling is more significantly configuration dependent as
compared to SimPoint.

Although the results in Fig. 8 show the frequency of CPI
errors across all benchmarks, we found that the results
presented in Fig. 8 were fairly typical for each benchmark
and that no benchmarks were “outliers” in terms of their
frequency of CPI error.

In conclusion, the results in this section show that the
reduced input set and truncated execution techniques are
severely configuration dependent because their CPI results
are very inaccurate and the CPI error does not trend. By
contrast, SimPoint and SMARTS have very little, if any,
configuration dependence because the CPI error is gener-
ally small and consistent. Finally, the configuration depen-
dence for random sampling ranges from severe to good for
the worst and best permutations, respectively.

7 RELATED WORK

Although we found several papers that were somewhat
related to this paper, we did not find any papers that
comprehensively evaluated the accuracy of all techniques
and found only one [10] that independently evaluated more
than one technique. Most papers that evaluated the
accuracy of techniques did so in the context of comparing
the results of a new technique to the results when using the
reference input set.

In [10], Gémez et al. show that the L2 behavior and
branch prediction accuracy of the MinneSPEC reduced
input sets are not reference-like and that the accuracy of
truncated execution depends heavily on fast-forwarding to a
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representative interval. In contrast to the results presented
in this paper, they do not evaluate any sampling-based
techniques and only evaluate a limited number of permuta-
tions for the reduced input sets and truncated execution.
Furthermore, their results did not analyze the accuracy of
the techniques by using multiple characterizations nor did
they evaluate the SvAT and the potential configuration
dependence.

Outside of [10], the most relevant related work falls into
two categories: simulation methodology and simulator
validation.

Simulation methodology. Yi et al. [20] proposed using a PB
design as a means of introducing a statistical rigor into the
simulation methodology. More specifically, they used a PB
design to identify the most significant bottlenecks to help
choose parameter values, to select a statistically different set
of benchmarks, and to measure the effect that an enhance-
ment has on the processor. The first two applications
attempt to improve the simulation setup phase, whereas the
last application improves the analysis phase.

Eeckhout et al. [8] used statistical data analysis techni-
ques to determine the statistical similarity of benchmark
and input set pairs. To quantify the similarity, they used
metrics such as instruction mix, branch prediction accuracy,
cache miss rates, number of instructions in a basic block,
and maximum amount of parallelism inherent to the
benchmark. After characterizing each benchmark with
these metrics, they used statistical techniques such as
principal component and cluster analyses to cluster the
benchmarks and input set pairs together.

Simulator wvalidation. Black and Shen [1] iteratively
improved the accuracy of their performance model by
comparing the cycle count of their simulator, which
targeted a specific architecture, against the cycle count of
the actual hardware. Their results show that modeling,
specification, and abstraction errors were still present in
their simulation model, even after a long period of
debugging. Their work showed the need for an extensive
iterative validation before the results from a performance
model can be trusted.

Desikan et al. [7] measured the amount of error, as
compared to the Alpha 21264 processor, which was present
in an Alpha version of the SimpleScalar simulator. Their
results showed that the simulators that model a specific
processor, such as SimpleScalar, generally report higher IPCs
than simulators that are validated against a real machine. On
the other hand, unvalidated simulators that targeted a
specific machine underestimated the performance.

Gibson et al. [9] described the types of errors that were
present in the FLASH simulator when compared to the
custom-built FLASH multiprocessor system. To determine
which errors were present in the FLASH simulator, they
compared the simulated execution time from the FLASH
simulator against the actual execution time of the FLASH
processor. Their results showed that the margin of error (the
percentage difference in the execution time) of some
simulators was more than 30 percent, which is higher than
the speedups that are often reported for specific architec-
tural enhancements.
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Fig. 9. Decision tree for the selection of a simulation technique.

8 RECOMMENDATIONS

Based on the results of the three characterization methods,
the SVAT, and the configuration dependence analysis, we
make three recommendations for performing simulation-
based architecture studies.

Recommendation 1: Improve the documentation of simulation
methodologies. From our survey of simulation methodolo-
gies, the number of unknown techniques accounted for half
of all papers from HPCA, ISCA, and MICRO 1994 to 2003,
as well as approximately one-third of the papers in the later
years. Inadequately documenting how the results were
obtained prevents other researchers from verifying those
results or building upon them. More importantly, results
that are presented without adequate documentation or
justification of the simulation methodology may be con-
sidered to be suspect.

Recommendation 2: Sampling-based simulation techniques
should be used when the goal is to get reference-like results.
Simulation with reduced input sets should be viewed as
using a completely different benchmark program than what
is obtained when using the reference input set. Given its
generally low level of accuracy, the truncated execution
technique should not be used since any conclusions that are
drawn from the results by using this technique may simply
be a figment of the technique rather than a bona fide effect.
Due to the very high levels of accuracy and their very low
simulation times, we highly recommend that sampling-
based techniques, as epitomized by SimPoint, SMARTS,
and random sampling, be used instead. Although this may
seem to be an intuitively obvious recommendation, the
fraction of papers that used the reduced input sets or
truncated execution techniques actually increased from
68.9 percent in the eight years prior to the introduction of
SimPoint to 82.1 percent in the conferences that occurred
after SimPoint was introduced. Finally, benchmarks from
old benchmark suites should not be used unless there is a
compelling reason to do so, especially so since SimPoint and
SMARTS are both fast and accurate. In our survey, we

found a surprising number of papers that used benchmarks
that were more than five years old. (So as to not sound too
preachy, we would like to point out that we have been
guilty of some of these problems ourselves.)

Recommendation 3: Suggestions for selecting a simulation
technique. Based on the results presented in the previous
two sections and from our experience in this study, Fig. 9
presents the detailed ordering of the seven techniques for
several different categories. The Technical Factors branch
orders the techniques based on the conclusions from the
three characterizations (performance bottleneck, execution
profile, and architectural level), the SvAT, and the config-
uration dependence analysis, the results of which were
presented in Sections 5 and 6.

The Complexity to Use category reflects the complexity of
the changes to the simulator that are needed to support that
technique. Since the reduced input sets do not require any
changes, they have the lowest complexity to use. SMARTS
and random sampling have the highest complexity to use
since they require the largest number of changes to the
simulator, such as support for periodic/random sampling,
functional warming, and statistical calculations. The other
four techniques have a medium complexity to use because
they could require changes to the simulator to support fast-
forwarding, warm-up, and early termination.

The Cost to Generate category is the amount of effort that
is needed to “create” each technique. Since SimPoint
requires minimal user intervention to find a benchmark’s
simulation points, it has the lowest cost. Note, however,
that, for some compiler-based studies, the architect may
need to repeatedly generate new simulation points to reflect
the status of various levels of code optimization. On the
other end of the spectrum, SMARTS, random sampling, and
reduced input sets have the highest costs to generate since
new SMARTS and random sampling parameters (U, W)
may need to be found or new reduced input sets need to be
created for each benchmark suite. The truncated execution
techniques may require a moderate cost to generate if the
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architect does a little bit of profiling to determine reasonable
fast-forwarding, warm-up, and run values.

The Processor Component Analysis branch orders the
techniques based on how similar their performance bottle-
necks are within each of the processor’s major components,
that is, Instruction Fetch, Execute, and Memory Hierarchy.
After eliminating the bottlenecks that are less significant
than the dummy bottlenecks (that is, noise), we then
compute the euclidean distance between each technique
and the reference input set. Then, to facilitate compar-
isons across techniques and components, we divide the
euclidean distance by the number of significant bottlenecks
in the reference input set. By focusing on specific
components, this analysis determines which techniques
should be used for which components.

Although these results confirm the results obtained in
the previous sections, there are some interesting results. For
each of the three components and each benchmark,
SMARTS, SimPoint, and random sampling show the best
behavior overall. For gzip, equake, and vpr-Route, Run Z is
not appropriate for any of the components and therefore
should not be used. The reduced input sets are not
appropriate when focusing on Instruction Fetch and
Memory Hierarchy bottlenecks for gcc and wvpr-Place. On
the other hand, for gzip, the reduced input sets are almost as
accurate as SMARTS, SimPoint, and random sampling.

In summary, for different processor components and for
a particular benchmark, the accuracy of a technique with
respect to the others may change. However, SMARTS,
SimPoint, and random sampling are the best overall
techniques.

9 CONCLUSION

With the advent of relatively detailed simulators such as
SimpleScalar, simulating the reference input set of a
SPEC 2000 benchmark to completion is not an option for
most computer architects. Consequently, architects have
proposed several simulation techniques, such as reduced
input sets, truncated execution, and sampling, with the
intent of decreasing the simulation time.

We used three characterizations to determine the accuracy
of each technique with respect to the reference input set.
First, we used the statistical PB design to perform a
performance bottleneck characterization of each technique.
Second, we performed an execution-profile analysis by
tallying the BBEF and BBV counts. Third, we compared
several architectural performance metrics. After evaluating
the accuracy of these techniques with the previous three
characterizations, we evaluated the SvAT and the potential
configuration dependence of each technique.

Ourresultslead to several important conclusions. First, the
accuracy of the reduced input set and truncated execution
techniques was very poor for all three characterizations and
the poor accuracy of these four techniques is not offset by a
faster simulation speed, which further diminishes their
utility. Second, these techniques are significantly configura-
tion dependent because they have a high frequency of large
CPI errors and because the CPI error does not trend. Third,
our results showed that, for all three characterizations and for
the configuration dependence analysis, SimPoint, SMARTS,
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and random sampling are significantly more accurate
techniques. Fourth, although SMARTS is slightly more
accurate, SimPoint has a better SVAT. On the other hand,
the SVAT of random sampling is not as good as it is for
SimPoint and SMARTS due to lower accuracy without a
significantly faster simulation speed.

ACKNOWLEDGMENTS

This work was supported in part by US National Science
Foundation Grant CCF-0541162, Intel, and the Minnesota
Supercomputing Institute. A preliminary version of this work

was first presented at the 11th International Symposium on
High-Performance Computer Architecture (HPCA ’05) [21].

REFERENCES

[1] B. Black and J. Shen, “Calibration of Microprocessor Performance
Models,” Computer, vol. 31, no. 5, pp. 59-65, May 1998.

[2] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework
for Architectural Level Power Analysis and Optimizations,” Proc.
27th Int’l Symp. Computer Architecture (ISCA "00), 2000.

[3] D. Citron, “MisSPECulation: Partial and Misleading Use of SPEC
CPU2000 in Computer Architecture Conferences,” 30th Int’l Symp.
Computer Architecture (ISCA '03) Panel Discussion, 2003.

[4] T. Conte, M. Hirsch, and K. Menezes, “Reducing State Loss for
Effective Trace Sampling of Superscalar Processors,” Proc. Int’l
Conf. Computer Design (ICCD), 1996.

[5] T. Conte and P. Bryan, personal communication, 2005.

[6] T. Conte and P. Bryan, “Statistical Techniques for Processor and
Cache Simulation,” Performance Evaluation and Benchmarking,
L.K. John and L. Eeckhout, eds., chapter 6, CRC Press, 2005.

[71 R. Desikan, D. Burger, and S. Keckler, “Measuring Experimental
Error in Microprocessor Simulation,” Proc. 28th Int’l Symp.
Computer Architecture (ISCA '01), 2001.

[8] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Work-
load Design: Selecting Representative Program-Input Pairs,” Proc.
11th Int’l Conf. Parallel Architectures and Compilation Techniques
(PACT '02), 2002.

[9] J. Gibson, R. Kunz, M. Ofelt, M. Horowitz, and ]. Hennessy,
“FLASH vs. (Simulated) FLASH: Closing the Simulation Loop,”
Proc. Ninth Int'l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’00), 2000.

[10] I. Gémez, L. Pifiuel, M. Prieto, and F. Tirado, “Analysis of
Simulation-Adapted SPEC 2000 Benchmarks,” Computer Architec-
ture News, vol. 30, no. 4, pp. 4-10, Sept. 2002.

[11] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “SimPoint 3.0:
Faster and More Flexible Program Analysis,” |. Instruction Level
Parallelism, Sept. 2005.

[12] J. Henning, “SPEC CPU2000: Measuring CPU Performance in the
New Millennium,” Computer, vol. 33, no. 7, pp. 28-35, July 2000.

[13] A. KleinOsowski and D. Lilja, “MinneSPEC: A New SPEC
Benchmark Workload for Simulation-Based Computer Architec-
ture Research,” IEEE Computer Architecture Letters, vol. 1, June
2002.

[14] D. Lilja, Measuring Computer Performance. Cambridge Univ. Press,
2000.

[15] E. Perelman, G. Hamerly, and B. Calder, “Picking Statistically
Valid and Early Simulation Points,” Proc. 12th Int’l Conf. Parallel
Architectures and Compilation Techniques (PACT '03), 2003.

[16] R.Plackettand J. Burman, “The Design of Optimum Multifactorial
Experiments,” Biometrika, vol. 33, no. 4, pp. 305-325, June 1946.

[17] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Auto-
matically Characterizing Large Scale Program Behavior,” Proc.
10th Int’l Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS "02), 2002.

[18] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe, “SMARTS:
Accelerating Microarchitectural Simulation via Rigorous Statisti-
cal Sampling,” Proc. 13th Int'l Symp. Computer Architecture (ISCA
"03), 2003.

[19] R. Wunderlich, personal communication, 2004.



YI ET AL.: SPEED VERSUS ACCURACY TRADE-OFFS IN MICROARCHITECTURAL SIMULATIONS

[20] J.Yi, D. Lilja, and D. Hawkins, “A Statistically-Rigorous Approach
for Improving Simulation Methodology,” Proc. Ninth Int’l Symp.
High-Performance Computer Architecture (HPCA '03), 2003.

[21] J. Yi, S. Kodakara, R. Sendag, D. Lilja, and D. Hawkins,
“Characterizing and Comparing Prevailing Simulation Techni-
ques,” Proc. 11th Int'l Symp. High-Performance Computer Architec-
ture (HPCA ’05), 2005.

Joshua J. Yi received the BS, MS, and PhD
degrees in electrical engineering from the Uni-
versity of Minnesota, Minneapolis. His PhD
dissertation focused on measuring and mitigating
the performance bottlenecks in processors. He is
currently a performance analyst at Freescale
Semiconductor, Inc., in Austin in the Great State
of Texas. His research interests include high-
performance computer architecture, simulation,
low-power design, and reliable computing. He is
the co-organizer of the Workshop on Modeling, Benchmarking, and
Simulation (MoBS) and Workshop on Computer Architecture Research
Directions (CARD). He is a member of the IEEE and the IEEE Computer
Society.

Resit Sendag received the BS degree in
electronics engineering from Hacettepe Univer-
sity, Ankara, Turkey, the MS degree in electrical
engineering from Cukurova University, Adana,
Turkey, and the PhD degree in electrical
engineering, from the University of Minnesota,
Minneapolis. He is currently an assistant pro-
fessor of electrical and computer engineering at
the University of Rhode Island, Kingston. His
research interests include high-performance
computer architecture, memory systems performance issues, and
parallel computing. He is a member of the IEEE and the IEEE Computer
Society.

1563

David J. Lilja received the BS degree in
computer engineering from lowa State Univer-
sity, Ames, and the MS and PhD degrees in
electrical engineering from the University of
lllinois, Urbana-Champaign. He is currently a
professor and the head of the Department of
Electrical and Computer Engineering and a
fellow of the Minnesota Supercomputing Insti-
tute, University of Minnesota, Minneapolis. He
- - also serves as a member of the graduate
faculties in computer science and scientific computation. He has been
a visiting senior engineer in the Hardware Performance Analysis Group
at IBM, Rochester, Minnesota, and a visiting professor at the University
of Western Australia, Perth, in which he was supported by a Fulbright
award. Previously, he worked as a research assistant at the Center for
Supercomputing Research and Development at the University of lllinois
and as a development engineer at Tandem Computers Inc. (now a
division of Hewlett-Packard), Cupertino, California. His primary research
interests are high-performance computer architecture, parallel comput-
ing, hardware-software interactions, nanocomputing, and performance
analysis. He has been the chair of or served on the program committees
of numerous conferences. He was a distinguished visitor of the IEEE
Computer Society, of which he is a member, is a member of the ACM, a
fellow of the IEEE, and is a registered professional engineer in electrical
engineering in Minnesota and California.

Douglas M. Hawkins received the degree from
Witwatersrand University, Johannesburg, South
Africa. He is a former chairman of the School of
Statistics, Witwatersrand University. He started
his own statistical consultancy company and
then joined the School of Statistics at the
University of Minnesota. His research interests
include statistical tools for quality improvement,
data diagnostics, data mining, and multivariate
methods.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


