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Abstract

Although current commercial processors are capabletciifey and executing multiple
instructions per cycle, processor resources such as #stse functional units, and
buffers are frequently idle due to the lack of availab&ruction-level parallelism. As a
result, the processor’'s actual performance is ofterbéow its theoretical maximum
performance. To increase the amount of instruction-lpaehllelism, this dissertation
proposes two microarchitectural techniques that dynamigalyove redundant and
trivial computations. A redundant computation is a comprathat the processor
performs repeatedly during the course of a program’'s erecuvhile a trivial
computation is one where the output is zero, one, @fffor a shifted version of one of
the inputs.

The first technique, Instruction Precomputation, compeaae$ instruction’s opcode and
input operands against the opcode and input operands that assl sto the
Precomputation Table. If the opcodes and input operandsh,nthe Precomputation
Table forwards the result for that redundant computatothé associated instruction.
Our results show that the 2048 highest frequency redundant ciopataccount for
14.68% to 44.49% of the total dynamic instruction count.  Usingtruction

Precomputation to dynamically remove these redundant cotignggields speedups of

Xii



0.71% to 45.40%, with an average of 10.53%, when using a 2048-eatgnipyutation
Table.

The second technique, the Simplification and EliminatidnTaovial Computations,
checks the opcode and input operands of each instructaetg¢omine whether or not that
computation is trivial or not. When the trivial computatican be simplified, the
instruction is converted to another type of instructiort fraduces the same result, but
with a lower execution frequency. When the trivial pomation can be eliminated, the
trivial computation hardware “computes” its result andaeas the instruction from the
pipeline. Our results show that 12.24% and 5.73% of all dynestructions in selected
SPEC 2000 and MediaBench, respectively, benchmarksiae¢ ¢computations. Adding
hardware to exploit these trivial computations yieldsedpes of 1.31% to 27.36%, with
an average of 8.86%, for the SPEC 2000 benchmarks and spee@u@8%fto 13.97%,
with an average of 4.00%, for the MediaBench benchmarks.

Finally, due to cost, time, and flexibility constrairgsnulators are used in the design and
implementation of next-generation processors and touatelthe performance of
processor enhancements. Despite this dependence ontsmsyutzomputer architects
usually approach the simulation process in an ad-hoc maiMistakes and irregularities
in the simulation process may introduce errors ineodimulation results. On the other
hand, using statistically-based simulation methodologgshéie architect decrease the
number of errors in the simulation process, gives mosght into the effect of a
processor design or enhancement, and provides statistipglort to the observed
behavior. This dissertation proposes and demonsttaesfficacy of using the statistical
Plackett and Burman design to improve how processor panavadies are chosen, how
benchmarks are chosen, and how processor enhanceareatsalyzed. In particular, the
results show the effect that Instruction Precomputatiand exploiting trivial
computations have on the processor.

This dissertation makes the following primary contribns. First, this dissertation

quantifies the amount of redundant and trivial computatibas are present in typical

Xiii



programs. Second, to exploit these two program cleistits, this dissertation
proposes and demonstrates the performance potentialwof microarchitectural
enhancements: Instruction Precomputation and Simplifying Bintiinating Trivial

Computations. Finally, this dissertation identifies peotd with existing simulation
methodologies and offers specific, statistically-basszbmmendations to improve the

overall quality of simulation methodology.
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Chapter 1

Introduction

In the past few years, superscalar processors have eet@most popular processor
architecture due to their high-performance. Examplesipérscalar processors include
the Alpha 21264 [Kessler98, Kessler99, Leiholz97], the MIPS R1(Q088ger96], the
UltraSparc Il [Horel99], and the PA-RISC 8000 [Kumar97]. dchieve even more
performance, processor designers can increase the fobaplency and/or increase the
number of instructions that the processor decodes, issxegjtes, and retires per clock

cycle.

Since higher clock frequencies do not yield proportionalemses in the processor’s
performance and since the maximum clock frequency is @mstr by the minimum
transistor width, processor designers primarily try taprove the processor’s
performance by maximizing the number of retired instructmerscycle. While current-
generation processors are capable of decoding, issuingtexg and retiring several
instructions in a single cycle, only independent instrastioan be issued in the same
cycle. One measure of how independent the instrucao@sfor a given region of a
program is the amount of instruction-level parallelidictP]j. The next two sections
briefly discuss the key components of superscalar psocesand the effect that

dependences between instructions have on the ILP.



1.1. Superscalar Microprocessors

As specified by the von Neumann model [Hennessy96], thentaim components of
modern processors are the execution core and memaghe€, the memory structures
closest to the processor (in terms of access tiane)used to hold recently accessed data
and instructions. To improve the performance of retrieviig dad instructions, the L1
Caches — the caches closest to the processor — arimtgpieparate caches, one for data
and one for instructions. This model of cache partitgpnis called the Harvard

Architecture [Hennessy96].

The L1 Instruction Cache (or I-Cache), the L1 Datah€éga®-Cache), and the L2 Cache
buffer instructions and data that will likely be neededhe near future. When using
these caches, instead of retrieving the requested blocks rfram memory — which
requires hundreds of cycles — the requested blocks cantieved from a cache.
Consequently, reducing the access time for those memocksbreduces the overall

program execution time.

The purpose of the execution core is to execute the bfséwel instructions of the
program. Its main components are: the instructiorhfiggic, the branch predictor and
target buffer, the decode logic, the register file,rd@rder buffer (ROB), the issue logic,
and the functional units. The instruction fetch logses predictions and target addresses
from the branch predictor and target buffer, respectivaty efficiently retrieve
instructions from memory and store them into the instactetch queue (IFQ). The
decode logic decodes instructions in the IFQ, retrieleg input operands from the
register file or ROB, and moves the decoded instructiotasthe ROB. In addition to
buffering the current state of each in-flight instranfithe ROB stores and also retires
these instructions in program order to support precise emospti The issue logic
determines which instructions are ready to execute — tbe thiat have all of their input

operand values — and sends them to the functional untts. fuhctional units compute



the results of arithmetic and logical instructions, estor load data values to and from the
memory hierarchy, and determine the branch directioriaget.

Figure 1.1.1 shows the functional-level organization eftgpical superscalar processor.
To improve the readability of the figure, the branch tatgdter is represented by the
branch predictor. For the same reason, the L2 Cauathenain memory are omitted.

Level-1 Instruction Cache

v f

Branch
Instruction Fetch Logic D a— i
Predicto
v A
Instruction Fetch Queue |
— Instruction Decode Logic
Register
File *
4P Reorder Buffe <
Instruction Issue Logic
oad
d
L Integer Integer FP FP Branch
Store ) ) ) ) )
Queue Units Mult/Div Units Mult/Div Unit
Level-1 Data Cache

Figure 1.1.1: Functional-Level Organization of a Superscalar Processor

The hallmark of superscalar processors is that they, fetecode, execute, and retire
multiple instructions per cycle. Consequently, theHdobgic, the decode logic, and the

functional units operate on several instructions eegcie.



However, due to branch instructions — or control dependgemticesaverage number of
fetched instructions is often far below the fetch wi@ttaximum number of instructions
that can be fetched per cycle). By lowering the aweragnber of instructions that are
fetched per cycle, control dependences also reduce theenwh instructions that are
being decoded, executed, or retired in any given cycle. Braredictors, branch target
buffers, and instruction fetch queues minimize, but camootpletely eliminate, the

effect of control dependences.

1.2. Instruction-Level Parallelism and Data Dependences

In addition to control dependences, data dependencesedisce the actual performance
from the theoretical peak performance. A read-aftéieWfRAW) data dependence exists
between two instructions if the result of the firgtmiction is used to calculate the result

of the second. For example, consider the assemblystaden in Figure 1.2.1.

loop: lw  rl,r2 ; 1l = Mem[r2]
add r1,r2,r3 irl=r2+r3
sub  r4,r1,r5 rd=r1-r5
mul  r1,r2,r3 rl=r2*r3
sra r2,r1,1 r2=r1>>1
beq r7,rl,loop ;Branchifr7=rl

Figure 1.2.1: Assembly Code Example of Read-After-Write Dependences

In Figure 1.2.1, RAW data dependences exist betweeadtieandsub instructions as
well as between theul andsra instructions. In the former pair, tlaeld computes and
then stores a value into registér, which thesub instruction uses as an input value. In
the latter pair, thenul instruction stores its result in registdr, which is subsequently
read by the following instructiorsfa) . For each pair of the instructions, the second

instruction cannot execute before the first since itdesethe result of the first.



Consequently, a RAW data dependence exists between gharfat second instructions

of each pair through registet .

Figure 1.2.1 also shows two other types of data dependendesaftter-write (WAW)
and write-after-read (WAR). A WAW data dependence ocadrsn two instructions
write to the same register value. For example,iguré 1.2.1, WAW data dependences
exist between théw and add instructions as well as between thdd and mul
instructions, both through registefl . For each pair of instructions, the second
instruction cannot write its output value to the sharegister until after the first

instruction has written its output value.

The WAR data dependence exists between two instructiort®e is¢cond instruction
writes to a register that the first reads from. IguFé 1.2.1, WAR dependences exist
between thesub andmul instructions through registet as well as between thraul

and thesra instructions through registe2 . Due to this dependence, the second
instruction cannot write its output value to the shargister until after the first has read
the register.

Since data dependences exist between instructions, thespoo@cannot issue or execute
those instructions completely in parallel. This has tmportant ramifications. First of
all, since processors are designed with enough resourdssue and execute multiple
instructions in parallel, processor resources are itllenvexecuting instructions with data
dependences. Second, the serial execution of theseciimis reduces the processor’s
performance from its theoretical maximum. Therefdie,improve the processor’s
resource utilization efficiency and, more importantly, improve its actual overall

performance, it is imperative to decrease the numbdemendent instructions.

In addition to control and data dependences, the other rizajtor that limits the amount
of ILP is the execution latency of instructions, orrenspecifically, the execution latency
of load instructions. While many instructions have mygie execution latencies, load

instructions latencies have a disproportionately largecetin the performance since they



have a very wide range of latencies, despite using teuli data caches and other
microarchitectural techniques such as out-of-order executma prefetching.
Instructions with very long execution latencies litie amount of ILP by reducing the
rate at which instructions are executed by the processor.

In summary, the number of instructions that can kaed and executed in parallel is
primarily limited by the amount of ILP. Control and aatependences, in addition to
long and variable instruction latencies, have a vergelamegative effect on the
processor’s performance. Therefore, to improve theggsms’s performance, computer
architects try to break the control and data dependenceduge the effective instruction
latency. The next few sub-sections introduce two teglms — Instruction
Precomputation and theSimplification and Elimination of Trivial Computations —
that attempt to break data dependences and reduce the exdémgncy.

1.3. Superscalar Performance

There are many different ways to measure a processerfsrmance, such as speedup,
SPEC number, millions of instructions per second (MIR&), [Lilja00], but one of the
more meaningful metrics — and perhaps the most impo#ta@the total execution time
of the program on that particular processor. The #otalunt of time it takes to execute a

program is approximated by Equation 1.3.1.

Te=n*CPI* T,

Equation 1.3.1: Formula for the Total Program Execution Time

Where
n Total number of executed instructions
CPI  Average number of cycles needed to execute an instmucti
Te Time per clock period (cycle)



Note that the reciprocal of CPI (cycles per instrugtisdPC (instructions per cycle).

Equation 1.3.1 shows that the execution tifeis proportional ton, CPI, and T.
Consequently, to reduce the program’s total execution itniee,necessary to either: 1)
Reduce the number of executed instructions, 2) Decreasvéhage execution time of
each instruction, and/or 3) Decrease the clock periodweder, since the number of
instructions in the program cannot be reduced at run-tiree iy hardware) and since
clock period is based on the minimum transistor widtie only viable option for

computer architects to reduce the program’s executionisiteereduce the CPI.

1.4. Redundant Computations

During the course of a program’s execution, a processecuéas many redundant
computations. A redundant computation is a computation ttiat processor had
performed earlier in the program. For example, condlde code fragment shown in
Figure 1.4.1:

for (i=0; i < MAX; i++)

for (j=0; j < MAX; j++)
{

}

Figure 1.4.1: Example of a Source of Redundant Computations

For each iteration of the outer loop, the calcalzi for the loop index variableare
exactly the same. More specifically, the calculagidorj are: 0+1, 1+1, 2+1, ... , 98+1,
99+1, 0+1, 1+1, 2+1, ..., 98+1, 99+1, 0+1, etc. Therefore, &iefirst iteration of the

outer loop, all the computations to compute each valji@m@f redundant.



It is important to note that redundant computations are linoted only to add
instructions. Rather, any and all computations can dthendant. Furthermore, it is also
important to note that an optimizing compiler may noaibke to remove these redundant
computations during the compilation process since the lacjuast operand values may
be unknown at compile time — possibly because they depanthe inputs to the

program.

Redundant computations can be divided into global and Ilé=edl redundant
computations. The difference between the two is thaet global-level redundant
computations are independent of the Program Counter WRil® local-level redundant
computations are dependent on the PC. Figure 1.4.2 ilesstiad difference between the

two levels.

add r1,r1,#1 ;:rl=r1+1
:0+1, 1+1, 2+1, 3+1, 4+1, ..., 98+1, 99+1

add r2,r3,r4 ;:;r2=r3+r4
: 140, 1+1, 1+2, 1+3, 1+4, ..., 1498, 1+99

Figure 1.4.2: Example of Global and Local Level Redundant Computations

In this example, there are no local-level redundantpeiations since either instruction
does not, itself, repeat a computation. However, atgibbal-level, there are 100
redundant computations since both instructions performatme ®perations on the same
input operand values. From this example, it is obviousdy tihere are more redundant
computations at the global-level, which is an importdigtinction when trying to
improve the processor’s performance by exploiting reduncamputations.

Redundant computations affect the program’s execution itinheo ways. First of all,
executing the instructions for redundant computations incseseprogram’s dynamic
instruction count. Secondly, these redundant computadifiest the average CPI since



they produce values for other instructions in the progratewever, these redundant
computations need to be executed to ensure correct progexation. Additionally, all

of the instances of these instructions may not be gathircomputations. Consequently,
the hardware cannot simply disregard these computationgnaime to decrease the
program’s execution time. Thus, the only recourse to awgrthe processor’s
performance, with respect to redundant computations, isedoce the CPI of the

redundant computations.

1.5. Value Reuse: Effect and Shortcomings

Value reuse [Sodani97, Sodani98] is a microarchitectural techtiguieimproves the
processor’s performance by dynamically removing redundant catigng from the
processor’s pipeline. During the program’s execution, th&iev reuse hardware
compares the opcode and input operand values of the cungniction against the
opcodes and input operand values (hereafter, alternatreddyred to as aunique
computation) of all recently executed instructions, which are starethe value reuse
table (VRT). If there is match between the opcodekiaput operand values, then the
current instruction is a redundant computation and, instéadntinuing its execution,
the current instruction gets its output value from #sult stored in the VRT. On the
other hand, if the current instruction’s opcode and input odevalues do not match
those found in the value reuse table, then the instrugdonot a recent redundant
computation and it executes normally. After finishing exien, the value reuse
hardware stores the opcode, input operand values, and oatpetfar that instruction
into the VRT.

While value reuse increases the amount of ILP — thus wmgothe processor’s

performance — it does not necessarily effectively tattgeetredundant computations that
have the most effect on the program’s execution tifikis shortcoming stems from the
fact that the VRT is finite in size. Consequenthhen all entries of the VRT are
occupied and when the current instruction tries to stengnique computation and output



value into the VRT, the contents of one entry areravitten. However, if the current
unique computation is executed less often than that afriéet replaces, then the current
unique computation is less useful in increasing the amouhtRosince it occurs less
often. In other words, due to dynamic replacement, thiges in the VRT are not
necessarily the unique computations that have the greamestt on the total program

execution time.

To address this problem, this dissertation proposes aanitritectural technique called

Instruction Precomputation.

1.6. Instruction Precomputation

As described in the previous sub-section, one problem waille reuse is that a unique
computation with a low frequency of execution could replachigh frequency one.
However, since it is virtually impossible for hardwdcedetermine at run-time which
uniqgue computations have the highest frequencies of executiestruction

Precomputation uses feedback-directed optimizatiorrsb determine, at compile-time,
the highest frequency unique computations. At run-time, thoggie computations are
then loaded into the Precomputation Table (PT), whiclety similar to the VRT with

the key exception that entries in the PT are not updatedgdilne program’s execution.
In other words, in value reuse, the hardware determineshwimique computations
should be in the VRT while in Instruction Precomputatitit® compiler controls which

unique computations are in the PT.

Using the compiler to statically determine which unique coatpuis have the highest
frequencies has two key advantages over using hardwarst, &id most importantly,
the compiler is able to determine if a unique computatoa high frequency unique
computation or not. Although the compiler only profilee program with one or two
different inputs, previous work showed that the same progviimdifferent inputs sets

had many high frequency unique computations in common. &r etbrds, determining
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the highest frequency unique computations of a program wsgeeific input will most
likely yield the highest frequency unique computations forstmme program, but with a
different input. Second, determining the highest frequemiyue computations with the
compiler means that fewer access ports are neededdssaitie PT. When the hardware
is used to profile a program, additional access portseméded to allow the hardware to
write to the table. However, when using the compitbe PT is never updated.
Therefore, no additional write ports are needed. Havingrfeccess ports results in a
lower PT access time, which means that InstructioedPnputation has a lower impact
on the clock period.

1.7. Simplification and Elimination of Trivial Computations

In addition to repeatedly performing many redundant compusiiuring the course of
the program’s execution, the processor also executes tmaial computations. A trivial
computation can be defined as a computation where thetowdjue is zero, one, or a
shifted version of one of the input operands. For exgmglaeg definitions given in this
dissertation, each of the following computations angatiri X+0, X—X, X*2, and X/1.
Since these particular computations are trivial — orenmrecisely, their output value is
trivial — the processor can reduce the execution latehtlyese computations either by
“calculating” the output value without using a functibnmit or by simplifying the
computation so it can use a functional unit with a low&ecution latency. The
remainder of this sub-section describes in more detail thiwial computations can be
simplified or eliminated to improve the processor’s pertomoe.

As in the case of redundant computations, it is importamote that an optimizing
compiler may not be able to remove these trivial coatpmris since the actual input
operand values may be unknown at compile time. Aesalt; removing or optimizing

the execution of these trivial computations is bestitethe hardware.
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Trivial computations affect the program’s execution timethe same two ways as do
redundant computations. First of all, performing triviaimpoitations increases the
program’s dynamic instruction count. Second, performingehteivial computations

increases the overall, average CPI since these instmagtroduce input values for other
instructions in the program. However, since thesealrigcomputations need to be
performed for correct program execution, to minimizertiediect on the processor’s

performance, the only recourse is to reduce their lgtenc

As described in the previous sub-section, there are tethads to reduce the CPI of
trivial computations. In the first method, the processiminates the trivial computation
completely by computing the final result of the instruttwithout a functional unit. In
the second method, the processor reduces the compkaxity;onsequently the execution
latency, of the trivial computation by converting the @tien into another operation.

For example, consider the following computations: X-X x4, where X is the value of
one the input operands. Since the result of thedostputation will be zero, regardless
of the value of X, it is pointless to perform that conapion using a functional unit since
the result is trivial. In this particular case, byigssg the value of zero to that
computation, the trivial computation hardware can redueeeiecution latency of this

instruction.

The result of the second computation is simply theevalf X shifted to the left by two
bit positions. Therefore, instead of performing this commriatormally by using an
integer multiply unit, the processor can perform thisngotation by converting this
computation to a shift-left operation. And since shitise a lower latency as compared
to multiplies, dynamically changing the instruction franmultiply instruction to a shift-
left instruction will decrease the CPI for this instioot thus decreasing the overall

program execution time.

In addition to reducing the execution latency of trivdalimputations, eliminating these

trivial computations also has another key benefit: speeulative early instruction

12



execution. For most superscalar processors, an instmucti issued (sent to the
functional units) only after it has been decoded and é&ftess received the values for
both its input operands. However, for the trivial compaots that can be eliminated, if
“the instruction has received the value for the trivigut (e.g. 0 for X*0), the instruction
does not need to wait for the other input operand valuerite asince the output can be
computed purely as a result of the trivial one. Consetydit exploiting these trivial
computations in this way, the processor can exceed tiadloga limit (the maximum
amount of ILP when given an infinite amount of hardwaue)-speculatively.

The key difference between non-speculative and specilgistruction execution is that
the output value of the latter is computed based on pireglivhat its input values might
be, executing it with those input values (generating a $g@e output value), and then
executing any dependent instructions with that speculatitpubwalue. Therefore,
before that instruction can be committed, the processeds to verify if the input values
were correctly predicted. If so, the output value haft tinstruction and any dependent
instructions can be written to the register file. néft, then the processor needs to re-
execute all dependent instructions that used the incorrkat. vd=or those instructions
that can be executed non-speculatively, the process@ mimeneed to check if the
prediction is correct (since no prediction was made) ean immediately commit its

output value.

1.8. The Efficacy, Utility, and Necessity of Simulators

Simulators are the most important tool in computer actute research. Due to cost,
time, and flexibility constraints, simulators are aftesed to explore the design space
when developing a new processor architecture or to evathatesffectiveness of a
proposed processor enhancement (hardware or softweoe)nstance, simulators reduce
the cost and development time of a new processor désigmiving the architecture
design team ballpark estimates of the processor's peaface. Without simulators in
this case, the team would have to use intuition or dgttadiricate the chip to evaluate
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the performance of each candidate design. Consequerttihgut simulators, designing
processors either would be too expensive or would yieldpeoy designs.

1.9. Deficiencies of Existing Simulation Methodologies

Despite this level of dependence on simulators, computhitects usually approach the
simulation process in an ad-hoc manner. Consequelhidy,résults that computer
architects obtain from their simulations may be nangletely accurate, or worse yet,
may be misleading. Furthermore, an ad-hoc simulaticethodology does not

necessarily extract the maximum amount of informatiom the results.

For example, a sensitivity analysis is frequentlyizeéd to determine the effect that
different processor parameters have on a processanegment. To test the effect of
each parameter, the computer architect will vary oneane parameters at a time while
holding the other parameters at a constant value andureetiee effect of the variable
parameter(s) on the processor enhancement. Howeaferelstarting the simulations,
several questions about sensitivity analysis itsedfdnt be answered. For example,
which parameters should be varied? What range of valbesld be used for those
parameters? Do any of the constant parameters intetthcthe variable ones? What is
the magnitude of those interactions? How much impacthé specific values of the

constant parameters have?

Furthermore, in addition to the questions about theitsgtys analysis setup, other
guestions regarding the simulation setup need to be amkwerer example, which
benchmarks (i.e. programs) should be used in the sensaivdlysis? Which input set
(to the benchmark) should be used? If the input setavely short, what effects does
its length have as compared to a longer input set? Howldsthibose effects be
mitigated?
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These questions and more are the type of questions théttmdee answered before
starting the simulations. However, due to the sheer catpoal cost, it is virtually
impossible to simulate all possible combinations of patarseor to fully answer all of
the simulation setup questions. This situation illusgahe need for a statistically-based
simulation methodology.

While the downside of using such a methodology is thatag require some additional
simulations, it also has the following advantages:

1) It decreases the number of errors that are preséime isimulation process
and helps the computer architect detect errors more quiclyrors
include, but are not limited to, simulator modeling errors, r use
implementation errors, and simulation setup errors [®&c Cain02,
Desikan01, Gibson00, GlammOQO0].

2) It gives more insight into what is occurring inside thecpssor or the
actual effect that a processor enhancement has qndbessor.

3) It gives objective confidence to the results and provatiassstical support
regarding the observed behavior.

While the first and third advantages are self-explanatibris not obvious from the
second advantage how a statistically-based methodotmggl improve the quality of the
analysis. Since simulators are complex, it is \ahfficult to fully understand the effect
that a design change or an enhancement may have ondadbesgor. As a result,
architects use high-level single-value metrics, suchpasdiip or cache miss rate, to
understand the “big-picture” effects. Unfortunately foisthpproach, these high-level
metrics sacrifice information for conciseness byaliding most of the information that is
available to the simulator for a single, neat assessnof the performance.
Consequently, important conclusions that are more sabtl®@verlooked. Furthermore,
since much information is discarded, only the net eftectthe final metric of two
competing effects is known.

15



For example, suppose a new prefetching mechanism improwespiihcessor’s

performance by 20%. Also suppose that in this case thafpthfetching mechanism
decreases the importance of the cache’s associatbutydramatically magnifies any
shortage in the number of load-store queue (LSQ) enti#kile this may be the case,
the speedup only shows the net result of the associ&idgcreased effect and the
increased effect of the LSQ entries. As a resultleathie overall speedup is quite good,
further analysis would reveal that this prefetching mechanmslso moves the

performance bottleneck from the cache associativithed_SQ entries.

Therefore, basing conclusions on a single high-lewatrimcan be dangerous since that
metric shows the “big picture” only at a distance. Hosveanalyzing the processor from
a statistical point-of-view can help the architect qugrttie effects that all components
have on the performance and on other important designcenge.g. power consumption,

etc.).

More specifically, this dissertation improves the dation methodology used by

computer architects by recommending specific procedureswiano

1) Choose the processor parameter values.
2) Select a sub-set of benchmarks.
3) Analyze the effect that an enhancement has on thegsoc

The first two recommendations target the simulatietup phase of the simulation

process while the last recommendation targets thgsasghase.

To |illustrate the efficacy and utility of using a statatly-rigorous simulation
methodology, this dissertation uses this simulationhowlogy when evaluating the
performance of Instruction Precomputation and the Siicgtion and Elimination of
Trivial Computations, which is described in Section 6.3.3.

16



1.10. Contributions of this Dissertation

This Ph.D. dissertation makes the following contributions

1) This dissertation quantifies the amount of redundant caatipus at the
global-level (PC-independent) and at the local-level@@@gendent).

2) This dissertation proposes a feedback-directed optiimizand hardware-
based processor enhancement called Instruction Precoroputdiat
yields speedups of 4.47% and 10.52% for a small and a large PT,
respectively.

3) This dissertation defines the range of and quantifiegmtheunt of trivial
computations.

4) This dissertation proposes a set of hardware mechanisnhsnprove the
processor's performance by Simplifying and Eliminating Trivial
Computations and by using a novel non-speculative scheduling
mechanism. This solution improves the processor's pudnce by
8.22% for a typical processor and by 6.5% for an aggressicegsor.

5) This dissertation makes specific recommendations @ntbamprove the
simulation methodology used by computer architects. Goidyg, these
recommendations can improve the overall quality of dmaulation
methodology, decrease the total number of simulatiguiskly determine
the processor’s bottlenecks, and provide analytical insighd the impact
of processor enhancements, as compared to when no rigginouigtion
methodology is used.

1.11. Dissertation Organization
The remainder of dissertation is organized as followsapfers 2 and 3 describe
Instruction Precomputation and the Simplification andimielation of Trivial

Computations in more detail while Chapter 4 does the samestatistically-based
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simulation methodology. Chapter 5 describes the sinylbemchmarks, and input sets
that were used while Chapter 6 describes performance refuitsinstruction
Precomputation and by exploiting trivial computations. In taldi Chapter 6 also
illustrates how statistically-rigorous simulation nmadblogy can improve the simulation
quality and analysis. Chapter 7 discusses previous wdsdtede to Instruction
Precomputation, exploiting trivial computations, and satiah methodology. Finally,

Chapter 8 describes the future work and Chapter 9 concludes.
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Chapter 2

Instruction Precomputation

As described in Chapter 1, Instruction Precomputationnsceoarchitectural technique
that improves the processor’s performance. The remaofdéis chapter describes the
problem that Instruction Precomputation attempts to stteeprogram characteristic that
it exploits, how it operates, and what hardware andpdenmadditions it needs.

2.1. Problems with Existing Value Reuse Mechanisms

As described in Chapter 1, and in more depth in Chapter de valuse [Sodani97,
Molina99] is a hardware-based technique that dynamicallpveminstructions that are
redundant computations by forwarding the results of thosgputations from the value
reuse table (VRT) to that instruction. The VRT is ancbip table that caches the input
operands and the results of previously executed computatibhe processor uses the
program counter (PC) value for each instruction to actes VRT. An example of a
four-entry VRT is shown in Figure 2.1.1. To access tlR¥l Vthe processor uses the
instruction’s PC and input operands (labeled Input #1 and Inpub#8e VRT. If the
PCs and input operands match, the VRT sends the outputatatbbat entry back to the
processor and that instruction is removed from the pipeli
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PC Input #1 Input #2 Output
PC Input #1 Input #2 Output
PC Input #1 Input #2 Output
PC Input #1 Input #2 Output
v
PC Input #1 Input #2 Output
From the Processor To the Processor

Figure 2.1.1: Four-Entry Value Reuse Table and its Processor Interface

Value reuse improves the processor’s performance by dewehs execution latency of
each reused instruction and by decreasing the number aircesconflicts in the issue
and execute stages of the pipeline. Decreasing the yabéracreused instruction either
directly or indirectly reduces the execution time ¢ thitical path; directly if the reused
instruction is on the critical path or indirectly lifet reused instruction produces the value
of an input operand for an instruction that is on thecatipath. Furthermore, since the
reused instruction does not pass through the remaining pipthges, the number of
resource conflicts (available issue slots, functiometisy reservation station entries, etc.)
decreases.

While value reuse can improve the processor’s performamee,problems limit its
effectiveness. First of all, since the PC is usedidex the VRT, value reuse can only
reuse the computations associated with each statiziatistn. Consequently, previous
computations can only be reused if that computation headl been performed for the
instruction associated with that particular PC. A®sult, while another instruction of
that type, but with a different PC, may have previoysyformed that redundant
computation, the result of that computation cannot lose@ since the results of the
second instruction cannot be accessed by the first instnucin other words, value reuse
can be exploited only if that static instruction had presip performed that computation,
even though another instruction may have performedidmical computation.
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Second, since the VRT is dynamically updated during theseoof the program’s
execution, low frequency redundant computations could evénttithla significant

percentage of the VRT’s entries. Replacing a high frequeedundant computation
with a low frequency one reduces the number of instrustidrat can reuse that

computation.

Overall, the net effect of these two problems is tladities reuse can be rather inefficient
by not reusing previously executed computations and then reyittigh frequency
computations in favor of lower ones. To address th@seproblems, and thus improve
the performance of value reuse, Instruction Precomputatises the compiler to
determine the highest frequency, PC-independent redundaputations and then does
not allow those high frequency redundant computations tegdaced at run-time.

2.2. The Amount of Redundant Computations

There are two types of redundant computations. Local-ledeindant computations are
redundant computations that are associated with a singleaR€ (i.e. PC-dependent)
while global-level redundant computations are PC-independemt example, 0+0 with a
PC value of 0x8000 and 0+0 with a PC value of 0x8004 are twaettfdocal-level
redundant computations while they are the same global-kedeindant computation.
Given these two definitions, the key question is: Whddfinition accounts for the
highest percentage of dynamic instructions, i.e. whicfiniien affects the larger
percentage of the program’s instructions?

To determine the amount of redundant computation at botlts)ethe opcode, input
operands, and PC for all the dynamic instructions haveetsttwed. To reduce the
memory requirements for storing this information, in additto storing the unique
computation itself, the total number of times that tlnasijue computation was executed
was also stored. Recall that a unique computation is caupufsthe opcode and input
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operand values. The instruction’s output value was mnoted because it is a
deterministic function of the opcode and input operandsegal

To determine the amount of global-level redundant compuatateach unique
computation’s PC was set to 0. As a result, unique conmpugathat have the same
opcode and input operands, but different PCs, map to the saigp@e computation.
Meanwhile, at the local-level, the unique computatiorCsviAas simply the instruction’s
PC.

To gather this information, a modified version n-fastfrom the SimpleScalar tool
suite [Burger97] was usedsim-fastis a functional simulator that it is optimized for
simulation speed. Consequently, it does not measurexd®it@®n time; it executes
instructions serially; and it does not model a processumpeline, caches, etc. However,
this simulator is adequate to determine the amount of lgéimh local level redundant
computation since the execution time, cache behavior, &te irrelevant when

determining the amount of redundant computation.

Table 2.2.1: Example Unique Computations

PC | Unigue Computation| Frequency
0x1000 0+1 400
0x1000 0+9 350
0x1000 1+1 500
0x1000 1+2 450
0x1000 1+3 500
0x1000 1+4 450
0x1000 1+5 450
0x1000 1+6 450
0x1000 1+7 550

The term, frequency of repetition, appears in the follgwaragraphs. The frequency of
repetition, or frequency, is the number of times that guencomputation occurs (i.e. the
number of dynamic instructions associated with that qudati unique computation) in

the program. Therefore, a unique computation is completatyue if it has a frequency
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of repetition of 1. On the other hand, unique computatiatis avfrequency greater than

one are redundant.

To illustrate how this term is used, Table 2.2.1 shows ¢ingpatational history for the
static instruction 0x1000.

In the program, for this PC, the computation 0+9 occurs 38€sti0+1 400 times; 1+2,
1+4, 1+5, and 1+6 450 times each; 1+1 and 1+3 500 times each; and 1+7n&50The
number of times that each computation occurs in theranogs its frequency.

2.2.1. Global-Level Redundant Computations

Figure 2.2.1.1 shows the frequency distribution of the unigquepatations for selected

benchmarks from the SPEC 2000 benchmark suite, using logariffequency ranges.

The second column in Table 5.4.1 shows the specific inpsitisat were used for results
in this figure. After trying several different frequencyga sizes, the logarithmic range
size was used since it produced the most compact resthtsuvaffecting the content.
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Benchmark, Global-Level, Normalized
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In Figure 2.2.1.1, the height of each bar correspondghéopercentage of unique
computations that have a frequency of execution within tfeguency range. For
example, if the uniqgue computation 10004+11442, PC = 0x1000 executese34 ttien
it falls into the < 16 frequency range.

As can be seen in Figure 2.2.1.1, almost 80% of all unique@u@tions have execution
frequencies less than 10 (with the exceptiongof), while over 90% of all unique
computations have execution frequencies less than 100s r&$ilt shows that most
unique computations occur relatively infrequently in a pnograConsequently, the
performance benefit in reusing most of the unique computaisorsatively low since

most of them are only executed a few times.
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Figure 2.2.1.2: Percentage of Dynamic Instructions Due to the Unique
Computations in each Frequency Range, Global-Level, Normalized

A unigue computation’s frequency of execution corresponds tauh#er of dynamic
instructions that that unique computation represents. Fam@e, if a unique
computation has a frequency of execution of 2000, 2000 dynamiadtishs perform

that specific computation. Similarly so, if three wegcomputations each have a
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frequency of 500,000, then those unique computations are estextidéal of 1,500,000
times, which corresponds to 1,500,000 dynamic instructions. e@a:1.2 shows the
percentage of dynamic instructions due to the unique commgaitioeach frequency

range.

In Figure 2.2.1.2, the height of each bar correspondthéopercentage of dynamic
instructions that have their unique computation in that freceange. For each
frequency range, comparing the heights of the baFsguares 2.2.1.1 and 2.2.1.2 shows
the relationship between the unique computations and dynantiaiciiens. For
example, invpr-Place more than 99% of all unique computations represent only 3.66%

of all dynamic instructions.

More than 90% of the unique computations account for only 2.¢gA8&6a to 29.66%
(bzip2 of the total number of instructions. Another way ttiag this result is that a
very large percentage of the unique computations accouat dsproportionately small
percentage of the total number of instructions. On therdtand, a program executes a
small set of unique computations a very large number @ stiniThis is one of the key
results of this dissertation.

While a very small percentage of unique computations maguat for a very large
percentage of instructions, if a program has billionsrm§ue computations, all of these
high frequency unique computations may not fit into a reddgrezed on-chip table.
Putting it another way, the number of unique computatiortscmrafit into a reasonably
sized on-chip table may not account for a significantgeege of the total instructions.
Therefore, Table 2.2.1.1 shows the percentage of dynamtcudtisns that are
represented by less than 2048 unique computations.

Table 2.2.1.1 shows that the top 2048 unique computations by frggaéegecution,
which account for a very small percentage of the totajusnicomputations (0.002% -
0.162%), represent a significant percentage of the totalnaignastructions (14.68% -

44.49%). The conclusion from these results is that Higdest frequency unique
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computations that can fit into a reasonably sized on-taige still account for a
significant percentage of the dynamic instructions.othrer words, Table 2.2.1.1 shows
that Instruction Precomputation has the potential ofmiggntly improving the

processor’s performance since it targets a large perceotége program’s instructions.

Table 2.2.1.1: Characteristics of the Uniqgue Computations for the Top 2048

Global-Level Unique Computations, by Frequency

Benchmark | % of Unigue Computations| % of Total Instructions
gzp 0.024 14.68
vpr-Place 0.029 40.57
vpr-Route 0.162 23.44
gcc 0.032 26.25
mesa 0.010 44.49
art 0.010 20.24
mcf 0.005 19.04
equake 0.017 37.87
ammp 0.079 23.93
par ser 0.010 22.86
vortex 0.033 25.24
bzip2 0.002 26.83
twol f 0.026 23.54

2.2.2. A Comparison of the Amount of Global and Local Level Redundant
Computation

While the previous section showed that there is a sigmf amount of redundant
computation available at the global-level, the key quessiohow much more redundant
computation is available (and can be exploited) at theaglelbel as compared to the
local-level? It is important to note that, for theneanumber of unique computations, the
global-level unique computations will account for a higlpercentage of the total
dynamic instruction as compared to the same number aifllexel unigue computations.
However, since the global-level unique computations maly represent significantly
more instructions, it is worthwhile to determine how margremnstructions the highest
frequency global-level unique computations represent éefoplementing Instruction
Precomputation. As a result, this section comparegltiml and local level results for
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the percentage of instructions: 1) In each frequency rande2) Represented by the top
2048 unique computations.
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Figure 2.2.2.1: Frequency Distribution of Unique Computations per
Benchmark, Local-Level, Normalized
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Figure 2.2.2.2: Percentage of Dynamic Instructions Due to the Unique

Computations in each Frequency Range, Local-Level, Normalized
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Figure 2.2.2.1 shows the frequency distribution of the uniquapatations at the local-
level while Figure 2.2.2.2 shows the percentage of dynarsicuictions due to the unique

computations in each frequency range at the local-level

Since unique computations that differ only by their PQiesimap to the same unique
computation at the global-level while mapping to different unigomputations at the

local-level, there are fewer unique computations in tbbak-level case. Consequently,
a direct comparison of Figure 2.2.1.1 with Figure 2.2.2.1 doesnake sense. However,
for each benchmark, global and local level unique compuigitan be compared by the

number of instructions that they represent.

A comparison of Figures 2.2.1.2 and 2.2.2.2 shows that glebel-linique computations
in the higher frequency ranges represent more dynantitdgtisns as compared to the
local-level unique computations in the same frequency gengéis result means that
that a single global-level unique computation represemtdarger percentage of
instructions as compared to the corresponding local-levetjuanicomputation.

Therefore, using Instruction Precomputation to explodunelant computations at a

global-level should yield a larger performance benefit.

To summarize the difference between Figures 2.2.1.2 and2.Zdble 2.2.2.1 compares
the percentage of instructions that are representedeb®0#48 highest frequency unique
computations at both levels. The second and third colshog/ the percentage of
dynamic instructions that are due to the top 2048 global andl llevel unique

computations, respectively, while the fourth columnhis difference of the second and

third columns.
Table 2.2.2.1 shows that a global-level based Instructi@eolmputation mechanism

could reuse an additional 0.01%h€sa to 12.59% @co of the total number of dynamic
instructions as compared to the local-level. In otherdgoTable 2.2.2.1 shows that
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global-level Instruction Precomputation has greater padenfor performance

improvement than local-level Instruction Precomputation.

Table 2.2.2.1: Percentage of Instructions Due to the 2048 Highest

Frequency Unigue Computations at the Global and Local Levels

Benchmark | Global | Local | Global - Local
gzp 14.68 | 11.77 2.90
vpr-Place | 40.57 | 29.76 10.82
vpr-Route | 23.44 | 19.88 3.55
gcc 26.25 | 13.66 12.59
mesa 44.49 | 44.48 0.01
art 20.24 | 13.82 6.42
mcf 19.04 | 13.63 5.41
equake 37.87 | 35.29 2.58
ammp 23.93 | 19.12 4.81
parser 22.86 | 18.59 4.27
vortex 25.24 | 21.67 3.57
bzip2 26.83 | 23.54 3.28
twol f 23.54 | 16.57 6.97

To determine whether the amount of redundant computatiorsnapéy the result of the
benchmark itself or of the benchmark’s input set, thmeséenchmarks were profiled
with another input set. The results from the second isptutwere very similar to the
results from the first. Therefore, the benchmarks| aot their inputs, are the cause of

redundant computations.

2.3. The Mechanics of Instruction Precomputation

As described briefly in Chapter 1, Instruction Precompniatonsists of two main steps:
static profiling and dynamic removal of redundant computatiom the profiling step,
the compiler runs the benchmark with a representatjwet iset to determine the unique
computations with the highest frequencies of executimstead of determining only the
unique computations with the highest frequencies of executencompiler could also
factor in the each instruction’s latency to deterntime unique computations with the
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highest frequency/latency products (F/LP). The F/LRnply the unique computation’s
frequency of execution multiplied by its execution laten Therefore, instructions that
have a single-cycle execution latency have F/LP tteathee same as their frequencies of

execution.

Although the compiler uses a “representative” input seradile the benchmark, the key
guestion is: Is there a correlation between the sehigiie computations and the specific
input set? In other words, will the compiler assembieery different set of unique
computations for each input set? If so, then Instru®i@computation cannot be used to
improve the performance of the processor. If not tthee unique computations are a
function of the benchmark, and not the input set, whiclammethat Instruction
Precomputation could significantly improve the procesgmiéormance.

Table 2.3.1: Number of Uniqgue Computations that are Present in Two Sets

of the 2048 Highest Frequency Unique Computations from Two Different

Input Sets

Benchmark | In Common | Percentage
gzp 2028 99.02
vpr-Place 527 25.73
vpr-Route 1228 59.96
gcc 1951 95.26
mesa 589 28.76
art 1615 78.86
mcf 1675 81.79
equake 1816 88.67
ammp 1862 90.92
parser 1309 63.92
vortex 1298 63.38
bz p2 1198 58.50
twolf 397 19.38

One approach to determine whether or not the highest frequeigye computations are
a function of the benchmark or input set is to determiaeathount of “overlap” between
two sets of high frequency unique computations that were prddugaifferent input

sets. Table 2.3.1 shows the number of unique computatianhardhcommon across two
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sets of the top 2048 highest frequency unique computations.sddond column shows
the number of unique computations that are present in btshadile the third column

shows that number as percentage of the total numhariqiie computations (2048).

Table 2.3.1 shows that with the exceptionymtPlace mesa andtwolf, at least 50% of
unique computations in one set are present in the otherFs® gzip gcc andammp
over 90% of the unique computations in one set are presehieiother. While the
percentage is below 50% fopr-Place mesa andtwolf, that percentage is affected by
the number of unique computations in each set. The prableartially due to limiting
the set to N unique computations instead of N differeaguencies. For instance, if the
2048" and 2048 unique computations in the same set have the same frgguehcthe
2048" unique computation is checked against the other set of unigogutations since
the 2048' unique computation is not included in that set. As ateiideveral unique
computations have the same frequency of execution, sdrtieem will be included in
one of the two sets, but not the other. In that cédmese unique computations will not

appear to be in common between the two sets.

While this reason would seem to be relatively insignificdine results show that this
reason is very significant for a few benchmarks. &ample, irmesaandart, 666 and
8416 unique computations, respectively, have the same frequérexecution as the
2048" highest frequency unique computation. This result shoas for these two
benchmarks, the number of unique computations that arenprestwo input sets is

deceptively low.

However, the key conclusion from Table 2.3.1 is thatnfiost benchmarks, a significant
percentage of the unique computations are present in bath gednsequently, the
conclusion is that the highest frequency unique computatos primarily a function of
the benchmark and less a function of the specific ingut se

After the compiler determines the set of the highesjuency unique computations, they

are compiled into the program binary. Therefore, eatissinique only to that program.
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The second step for Instruction Precomputation is thival of redundant computations
at run-time. Before the program begins execution, thecessmr initializes the
Precomputation Table (PT) with the unique computationserptbgram binary. Then,
as the program executes, for each instruction, the Bheisked to see if there is a match
between the opcodes and input operands of the PT enticesha opcode and input
operands of the current instruction. If a match is duthen the Instruction
Precomputation hardware forwards the value in the odigldtof the matching PT entry
to the instruction. As a result, since that instructioes not need to continue through the
remaining stages of the pipeline, it can be removed flwpipeline to await in-order
commit. If a match is not found, then the instructiomtinues through the pipeline and

executes as normal.

Figure 2.3.1 shows how the PT is integrated into the procegspeline.

Fetch Stage

v

Decode Stage —>
Instruction

+ Precomputation

Table and Hardware
Issue Stage —>

v

Execute Stage

v

Writeback Stage 47

Figure 2.3.1: Operation of a Superscalar Pipeline with Instruction
Precomputation

During the decode and issue stages, the opcode and input opfenaedsh dynamic
instruction are sent to the PT, when available. Tk&uotion Precomputation hardware
then determines if there is a match between the cuomsude and input operands with
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the unique computations in the PT. If a match is fourel Inktruction Precomputation
hardware sends the output value for that instructiorth® writeback stage, which

commits that value when the instruction is retired.

It is important to note that, unlike value reuse, Instaucirecomputation never updates
the PT whenever the matching unique computation is not fouRdther, the PT is

initialized just before the program starts executing.

Since instructions are removed from the pipeline onéynfiatching computation is found
in the PT, Instruction Precomputation isi@n-speculativeoptimization, i.e. the output
value that is forwarded from the PT to the instruct®the correct and final value. The
advantage of non-speculative optimizations is thay o not need hardware to check
the correctness of their speculation.

2.3.1. How it Improves Performance

Incorporating Instruction Precomputation into a superscptacessor improves the
processor’'s performance in two ways. First, forwardihg butput value of the
instruction early in the pipeline reduces the effectivienlay of the instruction (as
opposed to normal execution). This reduces the “CPlintém Equation 1.3.1.
Instructions that are dependent on those redundant coropistain also begin executing
earlier (as compared to when Instruction Precomputattomat used). Second,
dynamically removing the instruction from the pipeline dases the number of resource
conflicts in the later stages of the pipeline. Decrepsine number of resource conflicts
makes more issue slots available for other instructiatleyws other instructions to
execute sooner on a functional unit, decreases the murhiestructions that are on a
bus, etc. Consequently, since fewer resource conffieEns that instructions can begin
and finish execution faster, reducing the number of resooonflicts reduces the CPI

term.
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2.4. A Comparison of Instruction Precomputation and Value Reuse

Overall, Instruction Precomputation and value reuse armdlas approaches. Both
methods dynamically remove instructions that are redundamputations from the
pipeline after forwarding the correct output value tattmstruction. Both methods
define a redundant computation to be one that is currentheiPT or VRT.

While these two approaches are generally similar, thedkisrence between the two is
how a redundant computation gets into the PT or VRT. dtruotion Precomputation,
only the highest frequency redundant computations — whicketezmined by compiler
profiling — are put into the PT. Since it is likely thé&r that particular input set, the
highest frequency unique computations are already in theth&Fe is no need for

dynamic replacement.

On the other hand, in value reuse, if a unique computaiontifound in the VRT, then
it is added to the VRT. Therefore, even if a computatias not been redundant or will
not be redundant, is still is added to the VRT, evert ifieplaces a high frequency

redundant computation.

The one advantage that value reuse could have over listriRrecomputation is faster
table access, depending on its implementation. Instéadomparing the current
instruction’s opcode and input operands against every unique catiopuin the VRT,
using the current instruction’s PC as an index into th& ¢&n reduce the VRT access
time by quickly selecting the matching table entry (althotighinput operands still need
to be compared). As a result, not only does this appraaghire fewer comparisons, it
also removes the need to compare opcodes since themnlgabe one opcode per PC.
However, the depth of this advantage is difficult to qdiargince it depends on the size
of both tables, the exact implementation of both lmesms, the processor’s
architecture, and the processor’s clock frequency.
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Chapter 3

Trivial Computations

As described in Chapter 1, adding hardware to simplify anthirgte trivial
computations can improve the processor’s performanchis dhapter describes the
problem that the Simplification and Elimination of TaliComputations attempts to
solve, the program characteristic that it exploitsy it operates, and the hardware that is
needed.

3.1. Definition of Trivial Computations and How to Exploit Them

A significant percentage of a program’s total instructicount is due to trivial

computations, which are the result of the way programswaitten and compiled. A

trivial computation is an instruction whose output val@m de determined without
having to perform the specified computation by either comgettie operation to a less
complex one or by determining the result immediateedaon the value of one or both
of the inputs. An example of the former is a mujtipperation where one of the input
operands has a value of two. In this case, the muitiglyuction can be converted to a

shift-left instruction. Therefore, instead of executihg priginal multiply instruction
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with a multiply unit, that instruction can tsmplified to a shift-left instruction which

can then execute on a general integer ALU unit.

Converting the multiply instruction to a shift instructidacreases the execution latency
of the instruction. Instead of computing the output vdlyausing an integer multiply
unit that requires multiple clock cycles, the same tesaih be computed by using a
functional unit that requires only one or two clock cgcleFurthermore, since there
usually are two to three times more integer ALU funmiounits as compared to integer
multiply functional units in modern superscalar processaimplifying the trivial

computation also reduces the number of resource conflicts

An example of the latter type is an add instruction reh@ne of the input operands is
zero. In this case, the result of the instructiothes value of the other input operand.
Therefore, since the value of the output is equal tovéthee of the non-zero input, no
computation needs to be performed. Since one of the inputsvial (zero), this

computation can beliminated.

Detecting a trivial input and then eliminating that compataimproves the processor’s
performance in three ways. First of all, dynamicalyminating those computations
obviates the need to use a functional unit, thus reducingutider of resource conflicts.
Second, eliminating, instead of executing, trivial comportetireduces the execution
latency of those instructions. Finally, and most ingoaity, some trivial computations
can be eliminated before both input operand values ait@able. As a result, not only is
the result of that instruction non-speculative, itlso available earlier than is normally
possible since the result is available before the vdlbeth input operands are available.

For example, since the output value of the trivial patation X*0 is zero, regardless of
what the value of X is, by using extra hardware to elateé that trivial computation, the
result of that computation will be available before tfs®ue of X is available. To

illustrate the potential performance improvement, asstivat the value of X is available

two cycles after the zero input operand is available, thdtiply instructions have a 10
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cycle execution latency, and that multiply instructioas to pass through another 4
pipeline stages before it is executed. As a resuitkés 16 (2+10+4) additional cycles to
finish execute this instruction normally after the zemput operand value is available,
which is 15 more cycles than it would take to eliminate titivgal computation. Even if
the multiply instruction takes only a single cyclehiating that trivial computations

saves at least 6 cycles as compared to normal execution.

It is important to note that dynamically simplifying andrehating trivial computations

iS a non-speculative optimization.

Finally, while it seems as though an optimizing com@sleould be able to remove many
of these trivial computations, it is unable to do so unleswyalue of the input operands is
known at compile time. Furthermore, the compiler msag trivial computations, such as
0+0, for initialization purposes. Consequently, since tmpsler is unable to remove
these trivial computations and also since the compidiberately introduces additional
trivial computations into the program, it is left to th@rdware to simplify and eliminate

these trivial computations at run-time.

3.2. The Amount of Trivial Computations

While the previous sub-section first defined what triviemputations are, how they
could be exploited to improve the processor's performabge simplifying and

eliminating them, and how they actually go about improvirge tprocessor’s
performance, that description is somewhat uselessivialtrcomputations are not
prevalent in typical programs. The goal of this sultiseds to determine percentage of

dynamic instructions that are trivial computations.

Table 3.2.1 shows the types of computations that are defmadvial in this dissertation.

The first column shows the type of operation while seeond column shows how the
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result is normally computed. The third and fourth colunsi®w which trivial

computations can be eliminated and simplified, respegtivel

Table 3.2.1: List of Trivial Computations.

Operation Normal Can be Eliminated Can be Simplified
Add X+Y X,Y=0
Subtract X=Y Y=0; X=Y
Multiply X*Y X,Y=0 X,Y=Power of 2
Divide X+Y X=0; X=Y Y=Power of 2
AND X&Y X,Y={0,0xffffffff}; X=Y
OR, XOR XY, XOy | X,Y={0,0xffffffff}; X=Y
Logical Shift | X<<Y, X>>Y X,Y=0
Arithmetic Shift | X<<Y, X>>Y | X={0,0xffffffff}; Y=0
Absolute Value [X] X={0, Positive}
Square Root JIX X=0 X=Even Power of 2

The trivial computations that can be eliminated akso be divided into two groups, those
that can benefit from non-speculative, early execuand those that do not. Table 3.2.2

lists the trivial computations in the former catago

Table 3.2.2: Trivial Computations that Benefit from Non-Speculative, Early

Execution
Operation Normal Early Execution Candidates
Add X+Y
Subtract X=Y
Multiply X*Y X,Y=0
Divide XY X=0
AND X&Y X,Y=0
OR X|Y X, Y =0xffffffff
Logical Shift | X<<Y, X>>Y
Arithmetic Shift | X<<Y, X>>Y X={0, Oxffffffff}
Absolute Value [X]
Square Root JIX

For those trivial computations in Table 3.2.2, whbe specific input is found to be
trivial, not only is the computation also trividlut the result is either O or Oxffffffff. For

example, the computation X & 0 always produces atput value of O, regardless of the
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value of X. Similarly so, X | Oxffffffff is alway®xffffffff, again, regardless of the value
of X. The trivial computations not shown in Talde€.2 have to wait for both input

operands before the computation is known to bétror before the result is known.

It is obvious as to why most of the computationsTable 3.2.1 are trivial with the
possible exceptions of XOR and square roots fozvem power of two. For XOR, there
are three possible trivial inputs: 0, Oxffffffffnd X=Y. For X[ 0, the output value is X.
For X O Oxfffffff, the output value is ~X (complement of)X Finally, when X =Y, the
output value of XJ Y is 0.

For a square root, if the value of X is an even @owf two (e.g. 4, 16, 64), then the
result can be computed by halving the value in @kponent field. As a result, the
exponent needs only to be shifted to the right g bit. For example, the exponent for
16 is 0100 (4). By applying this simplification]1@D is right-shifted by one to produce
0010 (2). Using this new exponent, the new valuie number is 4 (1*9 which is the
square root of 16.

Finally, it is important to note that the defini® for add, sub, multiply, and divide trivial
computations in Table 3.2.1 are not limited onlyimteger operations, but are also
equally applicable to floating-point operationsowéver, due to differences in how the
number is represented (e.g. two’s complement vdEHE floating-point notation), how

a floating-point computation is simplified and elvated may differ as compared to its
integer counterpart.

Given the list of the trivial computations in Tab82.1, Figure 3.2.1 shows the
percentage of trivial computations in selected herarks from the SPEC 2000 and
MediaBench [Lee97] benchmark suites for each icsibn type and for each benchmark
suite. The second column in Table 5.4.1 showspleeific SPEC input set that was used
for results in this figure while the second columihTable 5.4.2 shows the specific
MediaBench input set. The benchmarks in the MeeleB benchmark suite represent

multimedia application programs such as compressginecryption, and encoding.
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Figure 3.2.1: Percentage of Trivial Computations per Instruction Type and
per Total Number of Dynamic Instructions for the SPEC and MediaBench

Benchmarks

Overall, these results in Figure 3.2.1 show thaialrcomputations account for 12.24%
and 5.73% of the total instructions in these SPH@ &lediaBench benchmarks,
respectively. Although some multimedia benchmames/ have a significant amount of
trivial computations, the benchmarks that werectetéfrom the MediaBench benchmark
suite for this study clearly do not.

Figure 3.2.1 also shows that almost all instructipes have a significant percentage of
trivial computations. However, a high percentagesdnot necessarily mean that those
instructions will have a significant impact on gh@gram’s overall execution time since
they could account for a very small percentageheftbtal executed instructiong-or
example, 100% of the absolute value instructiodsB) are trivial, but they account for
only 0.05% of the total instructions executed.

To determine whether the trivial computations aresalt of the benchmark itself, or of

the benchmark’s input set, the same benchmarks prefded with another input set.
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The results from the second input set were verylairto the results from the first, with
the exception that with the other input set, thedidiBench benchmarks had a higher
percentage of trivial computations (7.43%). Thiesult indicates that trivial
computations are primarily due to the benchmarlgranms themselves and not due to the
specific values of their inputs. However, for MediaBench benchmarks, the input set
has a larger effect on the amount of trivial compiah than it does for the SPEC

benchmarks.

3.3. The Mechanics of Trivial Computation Simplification and

Elimination

The first step to simplify or eliminate a triviabmputation is to determine if one of the
input operands (X, Y) is trivial (0, Oxffffffff, psitive, a power of two, or an even power
of two) or if the two input operands are equal &zleother. However, since different
instruction types have different sets of trivigpuns, the opcode is needed to determine
the possible set of trivial inputs. To determinieether or not one or more of the input
values are trivial, comparators are used to compacé input operand against the set of
candidate trivial input values for that operatioiince the input operand values may
arrive in different clock cycles, the comparatoe®ah to check the input operand values
as they arrive. Since it is possible for an indicuin to be both simplifiednd eliminated,

as is the case for 2*0, combinational logic is mektb determine if that is the case and
then to favor eliminating the computation. Fige8.1 shows the hardware that is

necessary to implement this logic and how thisddiys in the processor’s pipeline.

In this figure, the trivial computation hardware pgtaced between the reorder buffer,
which stores the results of the decode stage, lamdssue stage. The input operand
values, X and Y, for each instruction are senthtodix trivial operand comparators. The
comparators check if the input operand values gualeto zero (= 0), are all ones (All
1's), are equal to each other (X =), are posi{iwd®), are a power of two (log2), or are
an even power of two (E log2). The inputs to tihaal computation logic are the results
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of each comparison and the opcode for that instnuct The trivial computation logic
uses those inputs to first determine if the curiestruction is a trivial computation. If
the current instruction is a trivial computatiomtltan be eliminated, the output value for
that instruction is sent back to the reorder butfeing the “Result” bus. If the current
instruction is a trivial computation that can begiified, the trivial computation logic
generates the re-coded opcode and input operanésvaind sends them to the issue
logic. However, if the trivial computation can béminated and simplified, the trivial
computation logic will favor the eliminate optiondasimply generate the output value.

v v v v v v

Reorder Buffer

X | Onpcod
Y
A 4 v
| =0 | =0 | |AII1’S|AII1’S| |X:Y| | >0 | | log2 | log2 | |E|ogz|
Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No

vV vV VY Y v v VvV Vv ¥

Trivial Computation Logic

| [ [
New Opcode New X New Y
Result * * *

Issue Logic

Figure 3.3.1: Trivial Computation Hardware and Its Processor Interface

After determining if the instruction is a triviabmputation, then second step is to either
simplify the computation or eliminate it. Howevagmewhat ironically, simplifying a
computation is not a simple process. Simplifying @mteger multiply or divide
instruction means that the instruction needs t@dmeverted to a shift-left (multiply) or
shift-right (divide) instruction. Additionally, thtrivial input operand (i.e. the one that is
a power of two) needs to be converted into the@pyate shift amount. The non-trivial
input operand needs to be shifted by the same anasuthe bit-number of the only bit
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that is “1” in the trivial input. For instance, sasning that the computation to be

simplified is X/4, the bit-pattern for 4 is: 0000 Q000 0100. Therefore, the only bit that

is “1” in that bit-pattern is in bit position “2”Consequently, X needs to be shifted to the
right by 2.

The process of simplifying floating-point multipind divide instructions is similar with
one key exception. Instead of shifting the indiorcto the left or right, the shift amount
is added to or subtracted from the exponent ohthetrivial input operand. As a result,
instead of using a shifter, the simplified instrotshould use an adder or subtractor.
Since the exponent field is confined to a predetethfield of bits, an integer adder or

subtractor can be used to add or subtract theahifunt.

As explained above, to simplify a square root cotaen that is trivial (an even power
of two), only the exponent field of the input ne¢dse shifted to the right by one. As a
result, since the format of the number is not @jem, an integer shifter can be used to
simplify the computation. Alternatively, dedicatedhift-right-by-one can be
implemented next to the trivial input detectionitogo the simplified instruction does not
need to go through the pipeline.

Finally, after the instruction has been simplified re-coding it, it can be sent to the
functional units to be executed. After the simetifinstruction finished executing, the
result for that instruction is written to the rdgisfile and the instruction is committed,

just like any other instruction.

By comparison, eliminating a trivial computatioraisnuch simpler task than simplifying
one. The four output values of trivial computasiothat can be eliminated are 0, 1,
Oxffffffff, and X (assuming that Y is the triviahput). It is important to notice that, for
the first three output values, to eliminate thatial computation, after detecting that that
instruction is a trivial computation, simple comdtional logic can be used to set the
output to the correct value. In the case where dhgput value is equal to X,

combinational logic sets the output to the valu&Xafhen the value of X arrives. Then,
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for all four cases, after the output value is $lee¢, instruction needs only to write its
output value to the register file and be committed.

Finally, in the cases of trivial computation whemen-speculative, early execution
applies, the output value is set immediately, wéetir not the non-trivial input operand
is available. And if the value of the non-trivinput operand was not available when the
output value was set, then when it is arrivess ilgnored since it does not change the

output value.

3.4. Hardware Cost to Simplify and Eliminate Trivial Computations

The minimum hardware cost of exploiting trivial comtations, using this dissertation’s
definitions of trivial computations, are the ninengparators shown in Figure 3.3.1, the
trivial computation logic, a few multiplexors, anfdri-state gates, and a few extra busses.
However, the final hardware cost depends on the pascessor architecture and how
aggressively the architect wants to exploit trivi@mputations. The maximum cost
corresponds to when the trivial computation haréwsrown in Figure 3.3.1 is replicated
for each reorder buffer entry and for each res@wadtation entry (the input buffer for
the functional units) while the minimum cost copesds to when all reorder buffer
entries share the same set of comparators and ame $rivial computation logic.
Specific implementations in between either extreesult in hardware costs in between

the two extremes.
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Chapter 4

Simulation Methodology

As described in Chapter 1, without a rigorous satioh methodology, the computer
architect may make false conclusions or may notrglthe maximum amount of
information from the simulation results. Therefor® improve the simulation
methodology in computer architecture research, th&sertation uses a fractional
multifactorial design-of-experiments, the Placlkatitl Burman design [Plackett46], as the
foundation to improve specific stages of the simofaprocess. More specifically, the
remainder of this chapter describes how the restilise Plackett and Burman design can
be used to choose processor parameter values aodrbarks, and also how those results
can be used to analyze the effect of a process@mmeement.

4.1. An Overview of Simulation Methodology

The most important tool in processor design andpeder architecture research is the
processor simulator. Using a simulator reducestis¢ and time of a project by allowing
the architect to quickly evaluate the performantaitierent processor configurations
instead of fabricating a new processor for eacHigaration, a process that may take
several weeks or months and is extraordinarily egpe. Additionally, a simulator is
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much more flexible than fabricating the processoces it can somewhat accurately
determine the expected performance of a processeaneement without having to
undergo all the necessary circuit-level design sstefNote that the term “processor
enhancement” includes both microarchitectural anmdmler enhancements.

Since simulators are more cost-effective, flexibdmd efficient than fabricating a
processor, computer architects use their resuligiihe design decisions, determine what
points to explore in the design space, and to dyatiie efficacy of a processor
enhancement. Consequently, since misleading siimmleesults can severely affect the
final design of the processor or lead to erroneowosclusions, the accuracy of the
simulator’s results is extremely important. Theref to minimize the amount of error in
the simulation results, computer architects neeatbttwo things. First, they should try to
minimize the amount of error inherent to the sinulalas compared to a hardware
version of the processor the simulator models)coB8&, they should try to reduce the
amount of “error” that the user introduces whenning simulations. A user may
introduce additional error into the simulation resiy choosing a poor set of processor
parameters or benchmarks that over or under intla¢eprocessor’s performance, or
power consumption, reliability, etc. While curramisearch also focuses on decreasing
the processor's power consumption and improving ré@Bability, for brevity, the
remainder of this section assumes that the compuitdnitect is only trying to improve
the processor’s performance. However, the teclesidqbat are described in this chapter
are equally applicable to power consumption redacaind reliability improvement.

Furthermore, since the simulation results are usethake design decisions, it is also
important to glean the maximum amount of informatipom each set of simulation

results so that accurate conclusions can be dr&wnexample, while the speedup metric
measures the overall performance impact of a psocemnhancement, what it does not
reveal is “how” the processor enhancement gotfihat result. For instance, while the
processor enhancement may relieve one bottlenead (8s the cache miss rate), the
same enhancement may exacerbate another (sucte aamibunt of memory traffic),

which then could be the performance-limiting factorConsequently, the speedup
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represents the net effect that the processor eahveamt has on these two bottlenecks.
Higher speedups may be possible by redesigningnhancement such that the second

bottleneck is less of a limiting factor.

In spite of this dependence on simulators, relgtivétle research has focused on
decreasing the amount of error in simulation resiy improving the accuracy of
simulators and by improving simulation methodologyn fact, current simulation
methodology is, at best, ad-hoc. Therefore, toredese the amount of error in the
simulation results and also to improve the ovegadllity of the simulation methodology,

this dissertation introduces rigorous, statistichthsed simulation methodology.

4.1.1. Principal Steps of the Simulation Process

In computer architecture research, the simulatimtgss is the sequence of steps that
architects must perform to run their simulationsl &m analyze their simulation results.
Most architects start with a publicly available slator, such as SimpleScalar, and then
add their own code to the simulator to model tlexihancement. This dissertation

divides the simulation process into six major stepley are:

1) Simulator Design and Validation

2) Processor Enhancement Implementation and Verifinati
3) Processor Parameter Selection

4) Benchmark and Input Set Selection

5) Simulation

6) Analysis of an Enhancement’s Effect

In each of the following paragraphs, a short dpsion of each step is given along with a

short description of the some of the potential ertbat the user could make.

In the first step, the simulator is designed, immated, and verified. The most

important design decision when implementing a satarl is how much detail to
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incorporate into the simulator. For example, & imulator does not fully model the
memory traffic within the memory hierarchy, the fpemance of the simulated processor
will be higher-than-should-be-expected since thiecefof bus traffic and other resource
limited hazards are removed. While adding moreitletto the simulator improves its

accuracy, it comes with the price of a slower satioh speed, which results in longer
simulation times. In summary, the goal of thigsieto produce an accurate simulator
that fully models all of the key components, il tomponents that have a significant
effect on the simulated performance.

In the second step of the simulation process, ctenparchitects implement their
processor enhancement into the simulator or inkocthmpiler. In the former case, the
processor enhancement is a hardware-based sowltitda the latter is software-based.
After implementing the processor enhancement, vieiyy important for the architect to
verify if their implementation functions correcthnd if it is sufficiently detailed to

accurately model the enhancement. In summarygti@ of this step is to create an

accurate representation of the processor enhantemen

In the third step of the simulation process, thepoter architect chooses values for the
user-configurable processor parameters. Typicatgssor parameters include cache
size, associativity, and block size; reorder busiee; branch predictor type and size; and
the number and type of each functional unit. Iis ttissertation, the generic term
“processor parameters” includes parameters in ttoeegsor core and key memory
parameters. Choosing the set of values for thegssor parameters is important since a
poorly chosen set may result in creating artificidttlenecks or minimizing real
bottlenecks that are not present in commercialgssars.

The fourth step in the simulation process is sintethe third. In this step, the computer
architect chooses a sub-set of benchmarks fronbéhehmark suite and a set of inputs
for those benchmarks. Since processor enhancenssifitsr aim to improve the

processor’s performance for a wide range of progréire. general-purpose computing)

or for a specific set of programs and since the@se of simulations is to quantify the
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effect that a processor enhancement has, the cemguahitect needs to carefully choose
a sub-set of benchmarks and inputs that is aptepriAfter choosing the benchmarks,
the architect should compile them with a statehefart compiler (with the appropriate
compilation options), if the simulator models atestaf-the-art processor. Choosing an
unrepresentative set of benchmarks and inputs caleruor overstate the expected
performance of the processor which, in effect,oidtrces additional “error” into the
simulation process. In summary, the goal of theép 3s to choose an appropriate set of
benchmarks and inputs that will yield an accuratéate of the expected performance.
Poorly choosing a set of benchmarks and inputsdcimaldvertently introduce additional

error into the simulation results.

In the fifth step, the computer architect perforthe simulations. Although the setup
phase of the simulation process is concluded weép ®ur, decisions on how actually to
perform the simulation still need to be made. iRstance, to reduce the simulation time
even more, the computer architect may wish to eynplee of two options. First, to
reduce the simulation time of the initializationaglk of the program, which is less
interesting than the remainder of the programctitaputer architect may decide to “fast-
forward” (functional execution without any timingiformation) through most of the
initialization phase. The upside of this approashthat the architect can test the
performance of the enhancement on a more integegért of the program while limiting
the total simulation time. The downside is thaé tperformance results may be
misleading since they do not account for the exenutme of the initialization section.

In the other option, the simulation is terminatdttraa certain user-chosen number of
instructions. The upside of this approach is tesumption that after that number of
instructions, the processor has already executedk sor all of the most interesting
aspects of the program. Therefore, simulatingpitegram to the completion may not
yield any additional information about what efféia¢ enhancement has on the processor.
However, the downside is that skipping parts ofglegram may introduce some amount

of error into the simulation results.

49



In all of the first five steps of the simulationogess, the computer architect may fall into
several pitfalls that will affect the accuracy ¢ietsimulation results. And since the
architect makes conclusions based on the simula¢isults, inaccurate simulation results
may lead to inaccurate conclusions. However, sineemagnitude and net effect of each
of the errors is currently unknown, it is impossilbd say whether or not the simulation
results even produce an indicative trend. Congs#tyat is very important to decrease

the amount of error in some or all of these steps.

The sixth and final step of the simulation prodesanalyzing the simulation results. One
goal of this step is to thoroughly understand tfiece that the enhancement has on the
processor and how the enhancement interacts wétipitbcessor. Understanding these
two effects are central to understanding what $irtiie performance improvement of the
enhancement. To accomplish that goal, the comparehitect should look beyond
single-valued metrics, such as the speedup ordtieecmiss rate, to multi-valued metrics,
such as the distribution of the performance bogitks, which form a more complete
picture of the enhancement’s effect.

4.1.2. Focus of this Dissertation

This dissertation focuses on improving the simatatmethodology of the third step,
processor parameter selection; the fourth steg;hmeark selection; and the last step, the
analysis of an enhancement’s effect. This disgertaxcludes the first step (simulator
design and validation) for two reasons. Firstcesimost computer architects do not
implement their own simulator, but rather use mplavailable simulators as their base
simulator, focusing on this step benefits only aakmumber of computer architects.
Second, as will be described in Chapter 7, theve baen a few papers that have focused
on improving the accuracy of simulators. For samileasons, this dissertation does not
focus on the second (processor enhancement implatiiemand verification) and fifth
(simulation) steps.
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4.2. Fractional Multifactorial Design of Experiments

As described in Chapter 1, in a sensitivity analytiie values of some parameters are
varied while the values of the remaining parameseesfixed. Then, by measuring the
change in the output value in response to changethe values of the variable
parameters, a computer architect can determineftbet that each variable parameter, or

combination of parameters, has on the output.

Multifactorial designs are statistical methods thligw the user to determine the specific
effect that a variable parameter has on the oytdantgomery9]l. However, one key

difference between a multifactorial design, suchh@sanalysis of variance (ANOVA),

and a sensitivity analysis is the level of deth#tt can be extracted from each. In
ANOVA, the user can determine the percentage eftbett each parameter and
interaction (combination of parameters) have ondhange in the output value. For
example, the user may calculate that parametercéusnts for 25% of the total amount of
change (variation) in the output while parameteadBounts for 70%. In this particular
example, interaction AB accounts for the remairb®f. On the other hand, a sensitivity
analysis may only reveal that parameter B has mben effect on the output than does
parameter A and that their interaction has eves lés other words, the conclusions that
are derived from a sensitivity analysis are inhdyemore limited while the multifactorial

design conclusions are more analytical.

While the outputs of a multifactorial design, s@ashANOVA, may be more detailed than
the outputs of a sensitivity analysis, using theesanultifactorial design for all situations
it not necessarily the best solution. The badiedince between multifactorial designs is
the trade-off between the level of detail and thquired number of simulations. In
general, the multifactorial designs that yield thghest level of detail also require the
largest number of simulations. While having a biglevel of detail gives the user more
information from which to form a conclusion, thequged simulation time to produce
that level of detail may be prohibitively high. h@ total simulation time is equal to the
average time per simulation multiplied by the tataimber of simulations. The total
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number of simulations depends on the number ofbées, the number of values per
variable, and the specific multifactorial desigithe appropriate multifactorial design is
the one that exceeds the minimum level of detabled while having a tractable amount

of simulation time.

In this dissertation, to improve the simulation hogtology in computer architecture
research, the minimum level of detalil that is reegiiis the quantitative effect of each
individual parameter and the quantitative effecalbthe significant interactions. (There
are 41 individual, user-configurable parameteth@&SimpleScalar simulator that is used
in this dissertation.) The maximum amount of smoh time is limited by the total

number of processors that can be used to runiigations and their availability.

4.2.1. Comparison of Statistical Designs

To determine the effect of the individual parametnd the most significant interactions,
three different multifactorial designs were considefor use: the “one-at-a-time” design,
the ANOVA design, and the Plackett and Burman desid-or reasons that will be
explained below, the ANOVA design is an examplexdaill multifactorial design while
the Plackett and Burman design is an example cdaidnal multifactorial design. Each
of the following three sub-sections describes tleemanics of each design, as well as its

advantages and disadvantages.

4.2.1.1. One-at-a-Time Design

In the one-at-a-time experimental design, the valuene parameter is varied while the
other parameters are set to constant values. Xaonge, if each parameter can take one
of two values, the parameter that is being varseskt to its “high” value while all of the
other parameters are set to their respective “lealties. The high and low values for
each parameter represent the range of valueshidiaparameter can take. Then, the user
can determine the effect of each parameter by cangpahe output value when each

parameter is at its high value, while the othelapaaters are at their low value, with the
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configuration where all parameters are at their \@ues. The latter case is the baseline
case. Consequently, for N parameters and for @lWoes for each parameter, this design
requires only N+1 simulations. This design recpifd simulations to vary each

parameter to its high value and one simulatiortlierbaseline case. (If each parameter

can be set to X different values, these designsine(*N+1 simulations.)

The advantage of this design is that it requires #bsolute minimum number of
simulations. As a result, the amount of time regpiito execute this design and

determine the effect of each parameter is relatilat.

However, these designs should be avoided becawse a@fe vulnerable to masking
important effects that exist due to interactionswieen the parameters. Suppose the
interaction between parameters A and B is veryifsogmt, i.e. that interaction has a
large effect on the output value. However, sirfee éffect of interaction AB cannot be
quantified with this approach, whatever effect timeraction has will appear to be the
effect of a single parameter. Additionally, a dans parameter can be set to such an
extreme value that it dominates the results andstreelows the effect of the parameters
under test. For instance, setting the low valua biéiffer’s size to be too small can cause
this unit to become the performance bottlenecketine masking the effect due to another

parameter.

Overall, although the number of simulations requifer this design is very low, this
advantage is more than offset by the low qualityhef results. Consequently, since it is
difficult to have confidence in these results, thygion was discarded in favor of one of

the following two options.
4.2.1.2. Full Multifactorial Design: Analysis of Variance (ANOVA) D esign
To determine the effect of all single parameterd ateractions, a full multifactorial

design varies the parameters to account for evesgiple configuration. For example,

for a design with three parameters that can take passible values, the values of
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parameters A, B, and C will be: LLL, LLH, LHL, LHH;LL, HLH, HHL, and HHH,

where H and L represent the high and low valuegpeetively, for each parameter.

This design has the advantage of being able toigelgcquantify the effect that any
parameter or interaction has on the variation & ahtput. From a statistical point-of-
view, a parameter that has a large effect on thpubwalue will account for a large
percentage of the total variation in the outpus &result, by computing the percentage
effect that each parameter and interaction hahemwariation in the output, the user can
determine: 1) Which parameters and interactiongteemost significant (have the most
effect on the output value) and 2) The relative anipnt of parameters and interactions

with respect to each other.

However, the disadvantage of this design is thaisitextremely computationally

expensive. For example, assume that a computieitestwants to determine the percent
effect that all user-configurable parameters amd thteractions have on the processor’s
performance. Also assume that the architect iagusi simulator that has N user-
configurable parameters and decides to set thogardmeters to b different values.
Finally, assume also that the each simulation takesiverage of X hours. The total

amount of time to simulation all of these test sasex*d" hours.

For computer architects using the superscalar psocesimulator in the SimpleScalar
tool suite and 10 benchmarks from the SPEC 200@hmeark suite, N=41 and X=12.
Simulating all 2.2rillion test cases requires a total simulation time ofl262** hours,
or 30.1billion years! (This is three times longer than the etgzbtifetime of the sun.)

While these numbers are somewhat facetious, thet mdi this example is that, for
simulation-based computer architecture researcgb virtually impossible to simulate all
the test cases for values of N larger than 15. s€guently, the utility of full
multifactorial designs is limited to small valuelsho
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One potential solution to this problem is to fixethalues of some parameters while
performing the full multifactorial design for themaining parameters. Ideally, this
compromise drastically reduces the simulation twigle still determining the effect of

the most important parameters. For example, thepoter architect using SimpleScalar
may choose to fix the values of the B@st important parameters while varying the
values of the 11 most important. However, the lenobwith this approach is that the
values of the constant parameters may have a isgmifeffect on the results. Since
interactions between constant and variable paramet®y have a significant, but
unknown effect, on the results, the user cannot lehigh level of confidence in the

results of this approach.

Overall, although full multifactorial designs gitlee most information about the effects
of parameters and interactions, this advantageoi® rthan offset by the computational
cost. Consequently, since this cost was too higéngthe available computing resources,

this option was discarded in favor of the thirdiopt fractional multifactorial designs.

4.2.1.3. Fractional Multifactorial Design: Plackett and Burman Design

In a fractional multifactorial design, all N paraews are varied simultaneously over
approximately N+1 simulations, which is the logigaihinimal number of simulations
required to estimate the effect of each of the Mupeters. However, unlike the one-at-
a-time design where only one parameter is at gb kalue, in a fraction multifactorial
design, half of the values are at their high val&arthermore, each parameter is set to its

high value for half of the simulations.

One well-established fractional multifactorial dgsiis the Plackett and Burman design
[Plackett46]. The base Plackett and Burman desgaoires X simulations, where X is
the next multiple of four greater than N. For epéanif N=3, then X=4. However, if

N=16, then X=20. An improvement on the base Plackrd Burman design is the
Plackett and Burman design with foldover [Montgoy®dy. This doubles the number of

required simulations to 2*X.
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A Plackett and Burman design with foldover can aataly quantify the effect that single
parameters and selected, two-parameter interactie&e on the output variable.
Therefore, they cannot quantify the effect of iat#ions that are composed of three or
more parameters. While this may appear to be npagslem for computer architects, it
is not. The results in [Yi02-1] showed that thestomportant interactions are due to
dominant parameters. Therefore, if the effect ofi@teraction is significant, it is
composed of at least one dominant parameter.

Additionally, [Yi02-1] shows that almost all of theost significant interactions are two
parameter interactions. As a result, since a Bth@nd Burman design can quantify the
effects of all single parameters and all two patemeteractions, and since all other
significant interactions are the result of sigrafit single parameters, the Plackett and
Burman design is able to capture all of the sigaifi effects. Consequently, a computer
architect can use a Plackett and Burman desigidoacterize the effect that processor
parameters have on the performance with a highegegfrconfidence.

4.2.2. Mechanics of Plackett and Burman Designs

For a Plackett and Burman design, the value of achmeter in each configuration, is
given by the Plackett and Burman design matrixr rRost values of X, the Plackett and
Burman design matrix is simple to construct. Esm of the design matrix specifies if
the parameter is set to its high or low value faattconfiguration. For a Plackett and
Burman design with foldover, there are 2*X configtiwns, or rows. (Only X
configurations are needed when using a PlackettBamchan design without foldover.)
Each column specifies the values that a parametsstito across all configurations. For
a Plackett and Burman design, with or without foleig there are X-1 columns. When
there are more columns than parameters (i.e. N1y, Xien the extra columns are simply
“dummy parameters” and have no effect on the sitmrlaesults.
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For most values of X, the first row of the desigatrx is given in [Plackett46]. The

value of each entry in the design matrix is eithel” or “-1” where +1 corresponds to

the parameter’s high value and -1 correspondssttow value. The next X-2 rows are
formed by performing a circular right shift on theeceding row. Finally, row X, the last

row of the design matrix (without foldover), is @w of minus ones, which corresponds
to the base case. The gray-shaded portion of TaBI2.1, Rows 1-8, illustrates the
construction of the Plackett and Burman design im&r X=8, a design appropriate for

investigating four to seven parameters.

When using foldover, X additional rows are addethtomatrix. The signs of the values
in each of these additional rows are the oppoditéhe® corresponding entries in the
original matrix. The corresponding row for eacltledse foldover rows is X rows above
that row. Consequently, the last row, Row 2*Xaisow of plus ones. Table 4.2.2.1
shows the complete Plackett and Burman design xnatiin foldover. Note that rows 9-
16 specifically show the additional foldover rows.

Table 4.2.2.1: Plackett and Burman Design Matrix with Foldover (X=8)

A | B C D |E|F G | Execution Time
+1 (+1] +1 | -1 |+1] -1 | -1 9
1|41 41 | 41| -1 +1] -1 11
-1 -1 +1 | 41| +1) -1 +1 2
+1 (-1 -1 | +1 |+1|+1| -1 1
-1 |41 -1 | -1 | +1|+1] +1 9
+1 (-1 +1 | -1 |-1]|+1| +1 74
+1 | +1| -1 [ +1|-1|-1]| +1 7
-1 (-1 -1)|-1]-1|-1]| -1 4
10 -1 -1 +1| -1 +1] +1 17
+1 (-1 -1 | -1| 41| -1| +1 76
+1 | +1| -1 | -1| -1| +1] -1 6
1+ +1 1| 1) -1 +1 31
+1 | -1 +1| +1| -1| -1| -1 19
1| +1| -1 | +1) +1) -1 -1 33
1)1+ -1 +1) +1] -1 6
+1 [ +1] +1 | +1| +1| +1 +1 112

191] 19| 111] -13 79 55 23

For a Plackett and Burman design, the high andvialwes are slightly different than the
high and low values for the one-at-a-time design'+1”, or high value, for a parameter

represents a value that is slightly higher than rtdege of normal values for that
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parameter while a “-1”, or low value, representgadue that is slightly lower than the
range of normal values. By comparison, the higth law values for the one-at-a-design

represent the range of values that the parameteratiy can take.

It is important to note that the high and low vale not restricted to only numerical
values. For example, in the case of branch priedicthe high and low values could be
perfect and 2-level branch prediction, respectively is also important to note that
choosing high and low values that yield too largeaage can artificially inflate the
parameter’s apparent effect. On the other hamdsmaall a range for a parameter means
that the parameter will have very little or no effen the output. However, having too
large a range is better than having too small rabgeause that ensures that that
parameter has an effect on the output variableani case, the user should carefully
choose the high and low values for each parambétrare just outside of the “normal”

range of values.

After determining the configurations and performihg simulations, the effect of each
parameter is computed by the multiplying the patan®Plackett and Burman value (+1
or -1) for that configuration by the output varmb{e.g. execution time) for that
configuration and summing the resulting productsose all configurations. For
example, given the execution times in the rightnoodimn in Table 4.2.2.1, the effect of
parameter A is computed as follows:

Effecta =(1*9)+ (-1 *11)+ (-1*2)+ ...+ (-1 *33) ¢1*6) + (1 *112) =191
By performing the same computation for each paramiet Table 4.2.2.1, the results
show that the parameters that have the most edfethe execution time are parameters
G, A, and C, in order of their overall impact onfpemance. Only the magnitude of the

effect is important; the sign of the effect is megiess.

After computing the magnitude of the effect for legzarameter, the parameters were

ranked based on their magnitudes (1 = most impprkad = least important). Since the
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execution time (in cycles), for the same processmfiguration, can be very different
across benchmarks, the magnitudes of the effeliéstréhose differences. Consequently,
ranking the parameters by significance allows fomparisons between benchmarks,
which would not otherwise be possible due to thigeadifferences in the execution

times.

Collectively, the ranks of all parameters form &tee of ranks, one for each benchmark.
These vectors are used as the basis for improviagsimulation methodology. The
following three sections explain how these vectan be used to improve the way in
which processor parameters are chosen, benchmezkehasen, and the effect of an

enhancement is analyzed.

4.3. Processor Parameter Selection

Choosing the processor parameter values for simol# the third step in the simulation
process as described in Section 4.1.1. Choosfggad” set of values is very important
since improperly choosing the value of even a simqgrameter can significantly affect
the simulated speedup of a processor enhancenk@mtexample, simply increasing the
reorder buffer size can change 8peedupof value reuse [Yi02-1] from approximately

20% to approximately 30%.

However, choosing a good set of parameters is reglse difficult since many of the
important parameters may interact, thereby compiognthe error of selecting a single
poor value. Determining which parameters intenatjuires performing a sensitivity
analysis on all of the parameters simultaneouslghmiosing a select few parameters for
detailed study. The problem with the former appho& that simulating all possible
combinations is a virtual impossibility. The preinl with the latter approach is that in
studying only a few parameters, the other parametbave to have constant values.
Therefore, if one of the constant parameters saamitly interacts with one of the free
parameters, then the results of the sensitivityyarsawill be distorted.
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A Plackett and Burman design solves this problengumntifying the effect of all single
parameters. And since the most significant inte&as are the by-product of the most
significant single parameters, the user needs ndetermine the most important single
parameters.

To determine which single parameters are the mgsifisant ones, for each parameter,
the rank of that parameter across all benchmarlississummed together and then the
sums are sorted in ascending order. Consequémelygarameter with the lowest average
sum-of-ranks corresponds to, across all benchmahles parameter that has the most
effect on the variation in the execution time. hby examining the average sum-of-
ranks for each parameter, the computer architettdedermine which parameters have
the most effect on the execution time and can twefully choose values for those
parameters.

More formally, this dissertation recommends usihg following steps as guide when

choosing processor parameter values:

1) Determine the most significant processor parametsisg a Plackett and
Burman design.
a) Choose low and high values for each of the parasete
b) Run and analyze the Plackett and Burman simulatmigtermine the
critical parameters.
2) lIteratively perform sensitivity analyses for eaclti@al parameter using the
ANOVA design.
3) Choose final values for the significant parametesed on the results of the
sensitivity analyses.
4) Choose the final values for the remaining pararsebased on commercial

processor values, or some other appropriate source.
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Of these four steps, the most important step, byigathe first step. In this step, the
computer architect uses a Plackett and Burman wlésigletermine the most significant
parameters. The second step is optional depemdinge results of the first step. For
example, in Table 4.2.2.1, the two most significaatameters are clearly parameters A
and G. Consequently, using an ANOVA design to cammpthe relative effect of
parameters A and G (and any related interactioriit) parameter C is a waste of time
since parameters A and G are clearly much morerirapbthan parameter C. Finally, in
the third and fourth steps, the computer architdmboses the final values for all
parameters, based on the results of the first tejpgssand based on commercial parameter

values.

Detailed results demonstrating the efficacy of #pproach are given in Section 6.3.1.

4.4. Benchmark Selection

Choosing the benchmarks and inputs for simulat®othé fourth step in the simulation

process. Improperly choosing benchmarks and igets may affect the results, the

conclusions that are drawn, or both. First of ialh computer architect chooses a set of
benchmarks that does not accurately reflect thdicappns that the proposed processor
enhancement targets, then the apparent speedupodtigat enhancement may be

misleading enough to affect the conclusion thatafeditect forms. Although the results

of those simulations are not wrong, they could kalmisleading.

For example, if the proposed enhancement is a tphaefigg mechanism that seeks to
improve the performance of the memory hierarchyposing a set of benchmarks that
have very regular memory access patterns (as isase for scientific programs), could
produce speedup results that are higher than tbedsp results for a more memory-
intensive set of benchmarks. In that case, théitant may form a misleading

conclusion. Note that it is also possible for anho chosen set of benchmarks to
understate the speedup results.
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However, how does the architect know if two benadtk®i@re similar or dissimilar? One
option is to relying on existing classificationgjch as integer versus floating-point,
computationally-bound versus memory-bound, or Ipliegtion type. The problem with
this approach is that two benchmarks that are iilegdifferently may have the same
characteristics, such as having the same perfomnbattlenecks in the processor. On
the other hand, two benchmarks that are classifids in the same group may have very
dissimilar characteristics. Therefore, simply mgdyon existing classifications, without
verifying the similarity of benchmarks within andrass classification groups may still
result in a poor choice of benchmarks.

The solution proposed in this dissertation appreacthis problem from a different
direction. Instead of classifying benchmarks baeedtheir intrinsic characteristics,
benchmarks are classified based on what effect iaey on the processor. Different
benchmarks have different processor-related pednoa limiting factors (i.e. different
bottlenecks). Therefore, two benchmarks that laasenilar effect on the processor have
most of the same performance bottlenecks and caasdy should be grouped together.
Since the results of the Plackett and Burman destignv which parameters are the most
important (or in other words, are the biggest pennce bottlenecks), comparing the
Plackett and Burman design results of two benchsnaiticates how similar the two
benchmarks are, in terms of their performance diwgitks. Benchmarks that are similar
are put into the same group. After grouping adl tenchmarks into different groups,
selecting the final set of the benchmarks is easyesthe architect needs only to select

one benchmark from each group.

Detailed results demonstrating the efficacy of #pproach are given in Section 6.3.2.

4.5. Analysis of a Processor Enhancement

The last step in the simulation process is anadytiie effect of an enhancement. For
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most computer architects, the analysis extends tmlgalculating the speedup of the
processor enhancement or, measuring the amourbrwérdtion or the decrease in the
power consumption, or performing a sensitivity §sml of the key parameters. While
these approaches give the architect a high-lewtun@ of the enhancement’s effect, it

shows only the net effect.

For example, suppose that a processor enhancen@s a speedup of 25%. Also
suppose that two parameters (A and B) are the pyiparformance bottlenecks in the
processor. One case is that the enhancemente®lmih bottlenecks by about the same
amount. Therefore, the bottlenecks due to bothmaters still exist, albeit to a lesser
degree. However, another case is that the enhamteralieves the bottleneck due to
parameter A, but exacerbates the bottleneck dpartameter B. While both cases could
result in the same speedup, the two cases arriibaatspeedup by different ways.
Therefore, understanding what effect the enhancentes on the performance
bottlenecks is a crucial step in trying to imprakie performance of the enhancement. In
other words, high-level metrics such as speedup simdw what the enhancement did and
not how it got there. Since the “how” affects tianat”, it is important to determine the

effect that an enhancement has to a greater deguhust with high-level metrics.

Therefore, as a complement to the high-level nmgttitis dissertation proposes using the
Plackett and Burman design to quantify the effdcaroenhancement. The results of a
Plackett and Burman design can be used to meabarsignificance of all processor

parameters for the processor with and without tii@ecement. Since the significance of
a parameter is an indication of how much of a perénce bottleneck that parameter is, a
change in the significance of a parameter mearisthia parameter is more or less of a

performance bottleneck with that enhancement.
Therefore, to determine what effect an enhancerhast on the each parameter, the

difference in the average sum-of-ranks for eaclampater is computed. Consequently,
any parameter that experiences a large changes iavitrage sum-of-ranks after an
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enhancement is applied has become more of a betigBefore-After < 0) or less of a
bottleneck (Before-After > 0).

Detailed results demonstrating the efficacy of #pproach are given in Section 6.3.3.

4.6. Summary

This chapter describes three solutions, basedRlackett and Burman design, which can
improve the quality of simulation methodology bydady statistical rigor to the

simulation process. The first solution attemptsinprove how processor parameter
values are chosen, which is the third step of thmeilation process. This solution uses
two steps. The first step identifies and choos#ges for the most significant processor
parameters. In the second step, the architect selsowvalues for the remaining

parameters.

The second solution targets the fourth step of $imeulation process, benchmark
selection. This solution helps the architect selecset of benchmarks by using the
Plackett and Burman design results to categorieeb#mchmarks into different groups.
Since benchmarks in the same group have a sinatasfgerformance bottlenecks, to get
a wide range of benchmarks, the architect thenseedelect only one benchmark from

each group.

Finally, the third and final solution seeks to iimpe the analysis phase of the simulation
process. By using the Plackett and Burman desgults to rank and then sum the ranks
of each parameter, the architect can compare tlerage sum-of-ranks for each

parameter before and after the enhancement iseapi the processor. If the average
sum-of-ranks is higher after the enhancement ide@mented in the processor, that means
that that enhancement decreases the significantebparameter. In other words, this

parameter is now less of a performance bottleneitk this enhancement. A lower
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average sum-of-ranks means that that parameterowe more of a performance

bottleneck.
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Chapter 5

Experimental Framework

This chapter describes the experimental framewak Wwas used for the results given in
Chapter 6. There are four main sections in th&gptdr. The first section describes the
architecture osim-outordey the superscalar simulator from the SimpleScalat $suite
[Burger97]. The second and third sections desctibe processor and memory
configurations that were used to evaluate the padoce of Instruction Precomputation,
to evaluate the performance of Trivial Computat&implification and Elimination, and
to generate the Plackett and Burman design veétan&s. Finally Section 5.4 describes
the benchmarks and input sets that were usedsitsertation.

5.1. The SimpleScalar Superscalar Simulator

sim-outorderis the base superscalar simulator from the Singalla® 3.0 tool suite sim-
outorder is an execution-driven, cycle-accurate simulatiost tmodels a five-stage
processor pipeline (fetch, decode and dispatchyeissnd execute, writeback, and
commit). Althoughsim-outorderhas a relatively low number of pipeline stages as
compared to commercial processors, it models aeloqmipeline by offering a user-
configurable parameter that sets the number ogsyttiat it takes to flush the pipeline on
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a branch misprediction and restart instruction e&en from the first correct-path
instruction. In a superscalar processor, the nurmbpipeline stages between the branch
prediction and the branch execution determinesitimber of cycles it takes to detect a
branch misprediction (plus an additional few cydtedlush the instructions following the
mispredicted branch, and to start fetching and wxeg on the correct path).
Consequently, using a variable parameter to semntimber of cycles that it takes to
detect and recover from a branch misprediction Inyughodels the effect of a longer

pipeline.

In addition to branch predictiosjm-outorderalso has the following features: multiple
instruction fetch and execution, a monolithic resrdbuffer, fully-pipelined functional
units, a load-store queue, store forwarding, atwloalevel cache hierarchy.

Finally, althoughsim-outorderfairly accurately models most processor components
problem with this version of SimpleScalar is that memory hierarchy does not fully
model two aspects of the memory hierarchy. Findtead of allowing only a limited
number of loads to access the memory hierarshm-outorderallows an unlimited
number of loads to access memory. Also, insteadlloiving only a limited of traffic
within the memory hierarchysim-outorder allows an unlimited amount of traffic
between the L1 caches and the L2 Cache. The feet eff these two differences is that
the memory hierarchy irsim-outorderis less of a performance bottleneck than it
normally would be in a superscalar processor. Agesult, since Instruction
Precomputation and the Simplification and Elimioatbdf Trivial Computations attempt
to improve the processor’s performance (and notbenory hierarchy’s performance),
the somewhat unrealistic memory performance mog&elyli overestimates the

performance improvement of these two enhancements.

5.2. Instruction Precomputation and Trivial Computation Parameters

To evaluate the performance of Instruction Precdatmn or the Simplification and
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Elimination of Trivial Computations, each proposedhnique was added to the base-
outordersimulator. For both techniques, the base procesae a four-way issue width

machine.

Table 5.2.1: Key Processor and Memory Parameters for the Performance
Evaluation of Instruction Precomputation and the Simplification and
Elimination of Trivial Computations

Parameter Value
Branch Predictor Combined
Number of Branch History Table Entries 8192
Return Address Stack (RAS) Entries 64
Branch Misprediction Penalty 3 Cycles
Instruction Fetch Queue (IFQ) Entries 32
Reorder Buffer (ROB) Entries 64
Number of Integer ALUs 2
Number of FP ALUs 2
Number of Integer Multipliers 1
Number of FP Multipliers 1
Load-Store Queue (LSQ) Entries 32
Number of Memory Ports 2
L1 D-Cache Size 32 KB
L1 D-Cache Associativity 2-Way
L1 D-Cache Block Size 32 Bytes
L1 D-Cache Latency 1 Cycle
L1 I-Cache Size 32 KB
L1 I-Cache Associativity 2-Way
L1 I-Cache Block Size 32 Bytes
L1 I-Cache Latency 1 Cycle
L2 Cache Size 256 KB
L2 Cache Associativity 4-Way
L2 Cache Block Size 64 Bytes
L2 Cache Latency 12 Cycles
Memory Latency, First Block 60 Cycles
Memory Latency, Following Block 5 Cycles
Memory Bandwidth (Bytes/Cycle) 32
TLB Latency 30 Cycles

Table 5.2.1 shows the values of the key procesmbim@mory parameters that were used
for the performance evaluations of both techniqu&kese parameter values are similar
to those found in the Alpha 21264 [Kessler98, Ker€4, Leiholz97, Matson98] and the
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MIPS R10000 [Yeager96].

5.3. Plackett and Burman Parameters

As was the case for the performance evaluatiomstiruiction Precomputation and the
Simplification and Elimination of Trivial Computafis, the base simulator wasn-
outorder. sim-outorderwas modified to include user configurable instiuttlatencies
and throughputs. The value of the instruction digtgout is the number of cycles that
must separate the start of two instructions onstmee functional unit. For example, if
the instruction throughput for the floating-poinLWBs is two cycles and if instruction A
starts executing on a floating-point ALU at cycl@00, instruction B cannot start
executing on that floating-point ALU until cycle @®. However, instruction B can start
executing on any other floating-point ALU immediste

It is important to mention thagim-outorderwas used instead of the validated Alpha
21264 simulator [DesikanOl1] for three reasons. T reason is that this is a
methodology study and not an architecture or perémce-only study. Consequently,
since the simulation results serve only to illugtraertain key points, the choice of a
specific simulator does not affect the point tisabeéing made. The second reason is that
the Alpha simulator contains many parameters trespecific to the Alpha architecture
while the basic SimpleScalar simulator models aillgansuperscalar processor.
Therefore, to avoid the risk of producing resuliattare particular to the Alpha 21264
processorsim-outorderwas chosen to be the base simulator. The thasoreis that the
SimpleScalar simulator is itself a widely used datwr. Therefore, using this simulator
has the extra benefit of producing results that beaeficial to the SimpleScalar

community.
As stated in Chapter 4, the parameter values theg wsed in these simulations should be

slightly higher and lower than the normal rangevafues to allow the Plackett and
Burman design to work most efficiently. As a résthe final values for each parameter
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are not values that would be actually present imroercial processors nor are they

supposed to represent a potential valRather, the values were deliberately chosen to

be values that were slightly higher and lower than the range dfeasonable” values.

Table 5.3.1: Processor Core Parameters and Their Plackett and Burman

Values
Processor Core Parameter Low Value High Value
Instruction Fetch Queue (IFQ) Entries 4 32
Branch Predictor 2-Level Perfect
Branch Predictor Misprediction Penalty | 10 Cycles 2 Cycles
Return Address Stack (RAS) Entries 4 64
Branch Target Buffer (BTB) Entries 16 512
Branch Target Buffer (BTB) Associativity 2-Way Fully-Associative
Speculative Branch Update In Commit In Decode
Decode, Issue, and Commit Width 4-Way
Reorder Buffer (ROB) Entries 8 64
Load-Store Queue (LSQ) Entries 0.25 * ROB 1.0 *ROB
Memory Ports 1 4

Table 5.3.2: Functional Units Parameters and Their Plackett and Burman

Values
Functional Unit Parameter Low Value High Value
Integer ALUs 1 4
Integer ALU Latencies 2 Cycles 1 Cycle
Integer ALU Throughputs 1
FP ALUs 1 4
FP ALU Latencies 5 Cycles 1 Cycle
FP ALU Throughputs 1
Integer Mult/Div Units 1 4
Integer Multiply Latency 15 Cycles 2 Cycles
Integer Divide Latency 80 Cycles 10 Cycles
Integer Multiply Throughput 1
Integer Divide Throughput | Equal to the Integer Divide Latency
FP Mult/Div Units 1 4
FP Multiply Latency 5 Cycles 2 Cycles
FP Divide Latency 35 Cycles 10 Cycles
FP Square Root Latency 35 Cycles 15 Cycles

FP Multiply Throughput

Equal to the FP Multiply Latency

FP Divide Throughput

Equal to the FP D

ivide Latency

FP Square Root Throughput

Equal to the FP Square Root Latency
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Choosing values in this way allows the Plackett Badnan design to more accurately
determine the effect of each parameter on the psoces performance.

Table 5.3.3: Memory Hierarchy Parameters and Their Plackett and Burman

Values
Memory Hierarchy Parameter Low Value High Value
L1 I-Cache Size 4 KB 128 KB
L1 I-Cache Associativity 1-Way 8-Way
L1 I-Cache Block Size 16 Bytes 64 Bytes

L1 I-Cache Replacement Policy

Least Recently Used (LRU)

L1 I-Cache Latency 4 Cycles 1 Cycle
L1 D-Cache Size 4 KB 128 KB
L1 D-Cache Associativity 1-Way 8-Way
L1 D-Cache Block Size 16 Bytes 64 Bytes

L1 D-Cache Replacement Policy

Least Recently Used (LRU)

L1 D-Cache Latency 4 Cycles 1 Cycle

L2 Cache Size 256 KB 8192 KB

L2 Cache Associativity 1-Way 8-Way
L2 Cache Block Size 64 Bytes 256 Bytes

L2 Cache Replacement Policy

Least Recently Used (LRU)

L2 Cache Latency

20 Cycles

5 Cycles

Memory Latency, First Block

200 Cycles

50 Cycles

Memory Latency, Following Blocks

0.02 * Memory Latency, First Bloc

=~

Memory Bandwidth 4 Bytes 32 Bytes
I-TLB Size 32 Entries 256 Entries
I-TLB Page Size 4 KB 4096 KB
I-TLB Associativity 2-Way Fully-Associative
I-TLB Latency 80 Cycles 30 Cycles
D-TLB Size 32 Entries 256 Entries

D-TLB Page Size

Same as I-TLB Page Size

D-TLB Associativity

2-Way |

Fully-Associative

D-TLB Latency

Same as I-TLB Latency

Several parameters in these three tables are sihadealy. For these parameters, the low
and high values cannot be chosen completely inadkpely of the other parameters due
to the mechanics of a Plackett and Burman desigre problem occurs when one of the
shaded parameters is set to its high or low vahgethe parameter it is related to is set to
the opposite value. In those configurations, tleenl@nation of values for those

parameters leads to a situation that either doésmaie sense or would not actually

occur in a real processor. For example, if the memof LSQ entries were chosen
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independently of the number of ROB entries, somghefconfigurations would have an
8-entry reorder buffer and a 64-entry LSQ. Sinbe total number of in-flight
instructions cannot exceed the number of reord#eibantries, the maximum number of
filled LSQ entries could never exceed eight. Tfoees to avoid the above situation and
other similar ones, the specific values used in shraulations for all gray-shaded
parameters are based on their related parametes. allows the gray-shaded parameters
to have a meaningful effect on the output, insteadbeing artificially constrained by

another parameter.

Finally, all parameter values were based on a Veay-issue processor. While the issue
width is a very important parameter, the issue lwigts fixed at four for two reasons.

The first reason is the same as the reason givevedbr the parameters shaded in gray.
That is, if the issue width were set to its lowuealvhile the number of functional units

were set to their high values, then some of thetianal units would never be used since
simulator allows only four new instructions to staxecuting per cycle. Second, several
four-way issue commercial processors exist andethpgcessors are fairly well

documented. Therefore, to obtain a good rangeahfeg for each parameter, the issue
width was chosen to reflect the issue width of phecessors with good documentation.
However, fixing the issue width to a constant valoes not affect the conclusions drawn
from these simulations in any way. It merely ree®the issue width as one of variable

parameters.

5.4. Benchmarks and Input Sets

To evaluate the performance of Instruction Precdatmn, 12 benchmarks from the
SPEC CPU 2000 benchmark suite [Henning00], showhainle 5.4.1, were used. The
leftmost column in Table 5.4.1 gives the benchmaakne. The second and fourth
columns show the two input sets that were use@d&sh benchmark, while the third and
fifth columns show the dynamic instruction coumt,millions of instructions, for that

benchmark and input set combination. In the see@madfourth columns, the specific file
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is listed when there is more than one input seéhaff type. The input set in the second
and third columns is arbitrarily named “Input Sétwhile the other input set is likewise
named “Input Set B”.

evaluate the performance of Instruction Precomputat

Chapter 6 explains why twdfedent input sets are used to

Table 5.4.1: Selected SPEC CPU 2000 Benchmarks and Input Sets (Dynamic

Instruction Count in Millions of Instructions)

Benchmark | Input Set A Name | Instr. (M) | Input Set B Name | Ingr. (M)
gzp Small Gmred.log 526.4 Medium indred.log 531.4
vpr-Place Medium 216.9 Small 17.9
vpr-Route Medium 93.7 Small 5.7
gcc Medium 451.2 Test 1638.4
mesa Large 1220.6 Test 3239.6
art Large 2233.6 Test 4763.4
mcf Medium 174.7 Small 117.0
equake Large 715.9 Test 1461.9
ammp Medium 244.9 Small 68.1
parser Medium 459.3 Small 215.6
vortex Medium 380.3 Large 1050.0
bz p2 Large (gred.sourcg¢ | 1553.4 Test 8929.1
twolf Test 214.6 Large 764.9

These benchmarks were chosen because they wemnlthenes that had MinneSPEC
[KleinOsowskiO2] large reduced input sets availadiehe time. Since the benchmark

vpr uses two “sub-input” setBlaceandRoute the results for each are listed separately.

To evaluate the performance of Trivial Computat®implification and Elimination, the

same 12 benchmarks from the SPEC CPU 2000 benclsuaekwere used. But instead
of using two input sets, as was the case for lostmn Precomputation, only one input
set, Input Set A, was used. The MediaBench bendtenjaee97] listed in Table 5.4.2

were also used to evaluate the performance thatbeaachieved by Simplifying and
Eliminating Trivial Computations.

Finally, to evaluate the efficacy of the Plackettl®urman design in generating a vector
of ranks that is useful in improving simulation medology, the same 12 benchmarks
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from the SPEC CPU 2000 benchmark suite were uskvever, in this case, instead of
using small, medium, large, and test input setsiethuce the differences in the total
dynamic instruction count, only large input setsreveised. Table 5.4.3 shows the
benchmarks, input sets, and their dynamic inswaatount.

Table 5.4.2: Selected MediaBench Benchmarks and Input Sets (Dynamic

Instruction Count in Millions of Instructions)

Benchmark Input Set Name | Instr. (M)
adpcm-Decode clinton.adpcm 5.4
adpcm-Encode clinton.pcm 6.5
epic-Compress test_image.pgm 52.7

epic-Uncompress | test.image.pgm.E 6.8
g721-Decode clinton.g721 269.4
g721-Encode clinton.pcm 276.9

mpeg2-Decode options.par 170.9
mpeg2-Encode meilév2.m2v 1133.8
pegwit-Decrypt pegwit.dec 18.2
pegwit-Encrypt pgptest.plain 31.8
pegwit-Pub-Key my.sec 12.7

Table 5.4.3: Selected SPEC CPU 2000 Benchmarks with the Large Input Set

(Dynamic Instruction Count in Millions of Instructions)

Benchmark Input Set Name Instr. (M)
gzp Large (gred.graphig | 1364.2
vpr-Place Large 1521.7
vpr-Route Large 881.1
gcc Large 4040.7
mesa Large 1217.9
art Large 2181.1
mcf Large 601.2
equake Large 713.7
ammp Large 1228.1
parser Large 2721.6
vortex Large 1050.2
bzip2 Large (gred.graphiqg | 2467.7
twolf Large 764.6

In this dissertation, all benchmarks were comp#éé¢dptimization level -O3 using the

SimpleScalar version of the gcc compiler (versidh3. All benchmarks were compiled
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to target the PISA instruction-set, which is a MIK& instruction-set. Finally, the
benchmarks ran to completion without fast-forwagdin
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Chapter 6

Performance Evaluation

The results in this chapter are divided into threen sections that reflect the contents of
Chapters 2, 3, and 4. Section 6.1 presents thrpence results for Instruction
Precomputation while Section 6.2 does the sameh®iSimplification and Elimination
of Trivial Computations. Finally, the results iecion 6.3 show how the Plackett and
Burman design can be used to improve selected steéps simulation process.

6.1. Instruction Precomputation Performance Results

The performance results for Instruction Precomputedre divided into five groups. The
results of the first group present the upper-bopedormance results of Instruction
Precomputation; the upper-bound occurs when theesmput set is used for both
profiling and performance simulation. To acconiplighis, the benchmark was first
profiled with Input Set A to find the highest frezncy unique computations and then
evaluated the performance of Instruction Precontjautavith that benchmark by again
using Input Set A. The shorthand notation is Rr¥d%, Run A.

However, since it extremely unlikely that the saimeut set that is used to profile the
benchmark will also the same input set that willused to run the benchmark, Section
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6.1.2 presents the results for when two differaptt sets are used, i.e. Profile B, Run A.

This group of results represents the typical case.

Since the highest frequency unique computations) ftwo different input sets may be
very different from each other and since this caafféct the performance of Instruction
Precomputation, one solution is to combine the $eis of unique computations together.
In other words, instead of profiling only a singdput set, this solution uses the superset
of profiling results from two input sets. Thistesse is known as Profile AB, Run, A.

As described in Chapter 2, one of the ways tharuoson Precomputation improves a
processor’'s performance is by reducing the execufatency of the instructions that
match a unique computation in the PrecomputatiomleTgPT). Consequently,

dynamically removing instructions with the longesecution latencies yields the largest
performance gain. Therefore, choosing unique caatjoins purely by their frequency of
execution may not yield the largest performance gimce some low frequency unique
computations may have longer execution latencids. a result, the results in Section
6.1.4 compare the performance of Instruction Prexdation when using the highest
frequency unique computations and when using tihguarcomputations with the highest

frequency/latency product.
The final group of results compares the performamoprovement of Instruction
Precomputation against the performance improvemeutlue reuse. These results are

given in Section 6.1.5.

Note: When not explicitly stated, any specific tesare assumed to be from the Profile

B, Run A test case.

6.1.1. Upper-Bound — Profile A, Run A

Since Instruction Precomputation consists of twg geps — profiling and the dynamic

removal of redundant computations — using the sepet set for both represents the
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upper-bound on performance. This case is the dipmand because using the same input
set to profile and run a benchmark will determihe set of unique computations that
account for the largest possible percentage ofuosbns for that benchmark and input
set. Therefore, since removing the largest passiomber of instructions can minimize
the execution time, using the same input set tdilprand run the benchmark is the

upper-bound.

The following figure, Figure 6.1.1.1, shows the exhgp due to Instruction
Precomputation, for 16 to 2048 PT entries, whentrfet A is used both for profiling
and for execution. For comparison, the speedupt@uwsing a L1 D-Cache that is twice
as large as the L1 D-Cache of the base processoclisgled. This result, labeled “Big
Cache”, represents the alternative of using thp ahea for something other than the PT.
The total capacity of this cache is 64 KB.
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Figure 6.1.1.1: Speedup Due to Instruction Precomputation; Profile Input

Set A, Run Input Set A, Frequency

Figure 6.1.1.1 shows that the average upper-bopeedsip due to using a 16-entry PT is
4.82% for these 13 benchmarks (countimpg-Placeandvpr-Routeseparately) while the
speedup due to using a 2048-entry PT is 10.87%ros&call benchmarks, the range of
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speedups for a 2048-entry PT is 0.6984t)(to 45.05% hesa. The average speedup
results demonstrate that the upper-bound perforenamprovement due to Instruction

Precomputation is fairly good for all table sizes.

Instruction Precomputation is very effective in @&sing the execution time for two
benchmarksmesaandequake even for very small PTs. Foresathe speedup for a 16-
entry PT is 19.19% while the speedup for a 2048yelAT is 45.03%. Foequake the
speedups range from 9.35% to 28.71% for the san&Z@%. The reason that Instruction
Precomputation is particularly effective in redugrithe execution time of these
benchmarks is because the Top 2048 unique commogaccount for a very large
percentage of the total dynamic instructions. &&bPR.1.1 shows that the 2048 highest
frequency unique computations account for 44.49% 3n87% of the total dynamic

instructions count imesaandequake respectively.

For mesathe speedup levels off for Precomputation Taldeger than 128-entries. For
equake the speedup levels off after 1024-entries. Tason for this is that the unique
computations that are in the bottom “half” of theeédbmputation Table account for a
lower percentage of dynamic instructions than thigjue computations in the top half.
For example, iimesa the 64 highest frequency unique computations w@atctor 34.96%
of the total dynamic instructions while the next 6Wghest frequency unique
computations account for only an additional 7.69%As a result, doubling the
Precomputation Table size yields smaller and smp#eformance gains.

The average speedup due to using the larger L1 deCs 0.74%. By comparison, the
upper-bound speedup when using a 2048-entry Pradaiign Table (approximately 26

KB, assuming a one byte opcode, two four byte imqpérands, and a four byte output
value) averages 10.87%. In other words, usingeqmpiately the same chip area for a
Precomputation Table instead of for a larger L1 &i@& improves the performance of

the base processor by an additional 10%.
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6.1.2. Different Input Sets — Profile B, Run A

While the previous sub-section showed that the ippand speedup due to Instruction
Precomputation was approximately 10% for a 2048ydnT, the actual, i.e. achievable,
speedup may be much lower if the highest frequanugyue computations from two
different input sets are very different. Therefoi@ Instruction Precomputation to be
useful, the highest frequency unique computationsne input set have to be among the
highest frequency unique computations in anothpuotirset. If not, then Instruction
Precomputation may not be a very practical microiggctural enhancement.

Figure 6.1.2.1 shows the speedup due to InstruBienomputation when using Input Set
B for profiling and Input Set A for execution. Thgure shows the speedup using 16-
entry to 2048-entry PT tables that hold the higlfresjuency unique computations.
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Figure 6.1.2.1: Speedup Due to Instruction Precomputation; Profile Input
Set B, Run Input Set A, Frequency

As shown in Figure 6.1.2.1, the average speedugesafiom 4.47% for a 16-entry PT to
10.53% for a 2048-entry PT. By comparison, theedpp for Profile A, Run A ranges

from 4.82% to 10.87% for the same table sizes. s&@hesults show that the average
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speedups for Profile B, Run A are very close to tipper bound speedups for the
endpoint PT sizes. In addition, with one key exicep mesa the speedups for each

benchmark, for a given PT size, are similar.

Table 6.1.2.1 shows the speedupsn@sawhen using Input Set A for execution while

using Input Sets A and B for profiling.

Table 6.1.2.1: Speedup Due to Instruction Precomputation for mesa; Profile
Input Set A, Run Input Set A versus Profile Input Set B, Run Input Set A,

Frequency
PT Entries | Profile A, Run A | Profile B, Run A | Difference
16 19.19 16.91 2.28
32 23.49 16.92 6.56
64 31.77 22.59 9.18
128 43.40 29.45 13.95
256 45.40 44.37 1.03
512 45.40 45.40 0.00
1024 45.40 45.40 0.00
2048 45.40 45.40 0.00

The largest difference between the two sets ofdageeis for the 32-entry, 64-entry, and
128-entry PTs.
entries. The reason for the speedup differenceés$har subsequent disappearance is that

Those differences completely disapdor PT sizes larger than 256

the highest frequency unique computations for Infat B, do not have as high a
frequency of execution for Input Set A. Therefouefil the highest frequency unique
computations for Input Set A are included in the (®F PT sizes larger than 128), the
speedup for Profile B, Run A fomesawill be much lower than the upper-bound
speedup.

On the other hand, since the Profile B, Run A spped very significant for the smaller

table sizes, some unique computations have a faigly frequency of execution for both

input sets.
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Finally, for a few benchmarks and table sizessgeedup is actually slightly higher than
the “upper-bound” for Profile B, Run A. While tleedifferences in speedups are fairly
small (less than 0.3% difference), this result shdtat the highest frequency unique
computations for one input set may have an evehehidrequency of execution in

another input set.

The key conclusion of this sub-section is that therformance of Instruction
Precomputation is generally not affected by thei$iganput set since the Profile B, Run
A speedups are very close to the upper-bound spesedulhis conclusion is not
particularly surprising since Table 2.3.1 showedtth large number of the highest
frequency unique computations occur for multiplguin sets. Therefore, although
different input sets may be used for profiling aexecution, since the same high
frequency unique computations occur for multiplpuinsets, Instruction Precomputation

is an effective method of improving the processpesgormance.

6.1.3. Combination of Input Sets — Profile AB, Run A

While the performance of Instruction Precomputatisrgenerally not affected by the
specific input set, the speedup when different tinpets are used for profiling and
execution affects at least one benchmamlega. Although the difference in speedups
disappeared for larger PT sizes, sufficient chggaamay not exist to allow for a larger
table. One potential solution to this problem @ d¢ombine two sets of unique
computations — which are the product of two différeput sets — to form a single set of
unique computations that may be more representatia# input sets.

To form this combined set of unique computationsque computations were selected
from the 2048 highest frequency unique computatioom® Input Set A and Input Set B.
Excluding duplicates, the unique computations Wete chosen for the final set were the
ones that accounted for the largest percentaggraaic instructions for their input set.
In other words, when combining sets of unique cdions, only the unique
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computations that represent the largest percemtbigstructions are chosen for the final
set.

Figure 6.1.3.1 shows the speedup due to Instru®@tomputation when using Input
Sets A and B for profiling and Input Set A for ewan. The figure shows the speedup
using 16-entry to 2048-entry PT tables that hol@ thighest frequency unique

computations from each input set.
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Figure 6.1.3.1: Speedup Due to Instruction Precomputation; Profile Input
Set AB, Run Input Set A, Frequency

As shown in Figure 6.1.2.1, the average speedugesfiom 4.53% for a 16-entry PT to
10.71% for a 2048-entry PT. By comparison, theedpp for Profile A, Run A ranges
from 4.82% to 10.87% for the same table sizes,enie speedup for Profile B, Run A
ranges from 4.47% to 10.53%. Therefore, while dierage speedups for Profile AB,
Run A are closer to the upper bound speedups, usiagcombined set of unique
computations provides only a slight, but measurgiéeformance improvement over the
Profile B, Run A speedups.
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The main reason that the speedups for Profile A8 aaly slightly higher than the
speedups for Profile B is that the highest freqyamuque computations from Input Set
A are very similar to their counterparts from Ing&at B, for most benchmarks. Table
2.3.1 (given below for convenience) shows that g exceptions ofpr-Place mesa
andtwolf, more than half of the unique computations arergribie highest frequency
unique computations for Input Set A and Input Set Bherefore, since most of the
unique computations in the final set are commohbdtit input sets, it is not surprising to
see that the speedup is only slightly higher.

Table 6.1.3.1: Number of Uniqgue Computations that are Present in Two Sets

of 2048 of the Highest Frequency Uniqgue Computations from Two Different

Input Sets

Benchmark | In Common | Percentage
gzp 2028 99.0%
vpr-Place 527 25.7%
vpr-Route 1228 60.0%
gcc 1951 95.3%
mesa 589 28.8%
art 1615 78.9%
mcf 1675 81.8%
equake 1816 88.7%
ammp 1862 90.9%
parser 1309 63.9%
vortex 1298 63.4%
bz p2 1198 58.5%
twolf 397 19.4%

In the case ofpr-Place although the percentage of unique computationslagively low
(25.7%), the average speedup using the 2048 Pie=ifitr the Profile B, Run A case is
still fairly high (9.41%). However, after combimgrthe two sets of unique computations
together, the average speedup using the 2048 Riesembr the Profile AB, Run is
significantly higher (12.97%). These results shinat combining two sets of unique
computations together to form a single set, whichmore representative of all input sets,
produces a higher speedup.
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Formesathe percentage of common unique computationges Bwer (28.8%) than the
speedup for Profile B, Run A (45.40%) using 2048epiries. However, the 256 highest
frequency unique computations account for 44.3%hefdynamic instructions in Input
Set A; by comparison, the 2048 highest frequenaguencomputations account for only
44.5%. Therefore, for this benchmark, very fewquei computations need to be
common to both input sets for a significant peragatof the dynamic instructions to be

accounted for.

For twolf, the speedups for the Profile B, Run A case aadPtiofile AB, Run A case are
very close (4.38% for Profile B, Run A and 4.40% Ryofile AB, Run A), which would
seem to indicate that the highest frequency unapmeputations are generally dissimilar.
This conclusion is confirmed by the fact tiablf has the lowest percentage of unique
computations that are common across both input sktsother words, the reason that
only 19.4% of the top 2048 highest frequency unigomputations are common across
input sets is because the highest frequency uréqugutations are generally different.
One by-product of this characteristic fawolf is that combining sets of unique

computations does not significantly improve thefqgn@enance.

Finally, although Profile AB yields slightly highespeedups, the downside of this
approach is that the compiler needs to profile tmmut sets. Therefore, from a cost-
benefit point-of-view, an additional 0.29% (16 Pitrees) to 0.15% (2048 PT entries)
average speedup does not offset the cost of profilvo input sets and combining their

unique computations together.

6.1.4. Frequency versus Frequency and Latency Product

The last three sub-sections presented the speegutisr for Instruction Precomputation
based on choosing the highest frequency unique etatpns. Although the set of the
highest frequency unique computations represergsldtgest percentage of dynamic
instructions, those instructions could have a lowgract on the execution time than their

numbers would suggest since many of those dynansicuictions have a single-cycle
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execution latency. Therefore, instead of simplpading unique computations based
only on their frequency of execution, choosing timque computations that have the
highest frequency/latency product (F/LP) could d/ial larger performance gain. Since
the execution latency of a unique computation gt determined by its opcode, to
compute the F/LP for a unique computation, one reeeg to multiply the frequency of
that unique computation by its execution laten€hoosing unique computations based
on their F/LP, instead of solely by their frequenmay yield a larger performance gain
since the highest F/LP unique computations maynpiadey account for more execution
cycles than the highest frequency unique compurtstio

Figure 6.1.4.1 shows the speedup due to InstruBienomputation when using Input Set
B for profiling and Input Set A for execution. Thgure shows the speedup using 16-
entry to 2048-entry PT tables that hold the unigamputations with the highest F/LP.

The F/LP is computed by multiplying the frequendy execution by the execution

latency for that instruction (fixed latencies fach opcode).
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Figure 6.1.4.1: Speedup Due to Instruction Precomputation for the Highest
Frequency and Latency Product Unique Computations; Profile B, Run A
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As shown in Figure 6.1.4.1, the average speedugesfiom 3.85% for a 16-entry PT to
10.49% for a 2048-entry PT. In most cases, thedyge when using the highest F/LP
uniqgue computations is slightly lower than the slgs when using the highest
frequency unique computations. While this resudlyraeem a little counterintuitive, the
explanation for this result is because the processo issue and execute instructions out-
of-order. By issuing and executing instructions-otiorder, the processor is able to hide

the latency of longer-latency instructions by isguor executing other instructions.

While the processor is able to tolerate the effeiclonger execution latencies, it is
somewhat limited by the number of functional uni®y using the highest F/LP unique
computations, fewer instructions are dynamicalisnglated (as compared to when using
the highest frequency unique computations), thaseasing the number of instructions
that require a functional unit. As a result, arerfprmance improvements gained by
using the highest F/LP unique computations aregiigroffset by the higher amount of

functional unit contention.

6.1.5. Performance of Instruction Precomputation versus Value Reles

As described in Chapters 1 and 2, value reuse nsiceoarchitectural technique that
dynamically removes redundant computations from ff®cessor's pipeline by
forwarding their output values from the value retmgle (VRT) [Sodani97, Sodani98].
The key difference between value reuse and Ingbrud®recomputation is that value
reuse dynamically updates the VRT while the Preadaimn Table is statically
managed by the compiler. Since the two approaahegjuite similar, this sub-section
compares the speedup results of Instruction Preatatipn with the speedup results for
value reuse. Figure 6.1.5 shows the average speeshults for value reuse when
executing Input Set A.

The configuration of the base processor is the sasnéhe base processor configuration

for Instruction Precomputation. The number of eateuse table entries varies from 16

to 2048 entries. Each entry holds the opcode,tigmerands, and output value of a
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redundant computation. When the program beginsutim, all entries of the VRT are
invalid. During program execution, the opcode amgut operands of each dynamic
instruction are compared to the opcodes and inpgramds in the VRT. As with
Instruction Precomputation, when the opcodes amitimperands match, the VRT
forwards the output value to that instruction andsi removed from the pipeline.
Otherwise, the instruction executes normally. Estin the VRT are replaced only when
the VRT is full. In that event, the least-recentged (LRU) entry is replaced.
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Figure 6.1.5.1: Speedup Due to Value Reuse; Run A

As shown in Figure 6.1.5.1, the average speedugesafiom 1.82% for a 16-entry VRT
to 7.43% for a 2048-entry VRT while the speeduplfstruction Precomputation (Profile
B, Run A) ranges from 4.47% to 10.53% for the samwenber of table entries.
Therefore, for all table sizes, Instruction Precatapion has a higher speedup. This
difference is especially noticeable for the 16-gidbles.

Since value reuse constantly replaces the LRU eamwitiythe opcode and input operands
of the latest dynamic instruction, the VRT can lgase filled with low frequency unique
computations when it is very small. By contrasistiuction Precomputation is most

effective when the table size is small since eaunyen the PT accounts for a large
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percentage of dynamic instructions. The reasonttigaVRT could be filled with lower
frequency unique computations while the PT is dillith highest frequency ones is
because Instruction Precomputation selects theekigiiequency unique computations
based on profiling while the value reuse hardwdfiecBvely assumes that the frequency
of recently executed computations is higher thanfridiquency of the LRU entries.

In conclusion, while value reuse is very limited ltlge VRT size, Instruction
Precomputation is especially effective. Overdile taverage speedup for Instruction
Precomputation is significantly higher than therage speedup for value reuse for all
table sizes. This result shows that using the demp choose the highest frequency
unique computations is better than using hardwamotthe same, especially for smaller
table sizes.

6.1.6. Summary

The results in this section show that Instructioec®@mputation can significantly improve
the processor’s performance, by an average of W& up to 45.40% for a 2048-entry
table. For all table sizes, the average speeduphé Profile B, Run A; Profile AB, Run
A; and the F/LP configurations are quite closehi upper bound speedup. Finally, the
results in the last sub-section showed that theagee speedup due to Instruction
Precomputation was much higher than the averagaapefor value reuse, especially for
the smaller table sizes.

6.2. Performance Results for Exploiting Trivial Computations

This section presents the speedup results whenugxemf the trivial computations in
the benchmark are simplified or eliminated. Sec@o2.1 gives the speedup results for
the baseline processor configuration, shown in &dbR.1. Section 6.2.2 gives the

speedup results when additional functional units added to the baseline processor
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configuration to remove any functional unit constt&a In each section, the speedup
results for the SPEC and MediaBench benchmarkgiee@ in separate figures.

6.2.1. Realistic Processor Configuration

This processor configuration is labeled as thelisee’ processor configuration since it
closely resembles the configurations of the MIP®M®D and Alpha 21264. Figures
6.2.1.1 and 6.2.1.2 show the performance improverngrsimplifying and eliminating
trivial computations for the SPEC and MediaBencmcdbenarks, respectively. The
rightmost bar in each figure shows the averagedsgeacross the benchmarks from that

benchmark suite.
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Figure 6.2.1.1: Speedup Due to the Simplification and Elimination of Trivial
Computations for Selected SPEC 2000 Benchmarks, Realistic Processor

Configuration

Figure 6.2.1.1 shows that simplifying and elimingtitrivial computations yields
speedups of 1.31%Z%ip2 to 27.36% ihesa, with an average of 8.86% for the 13 SPEC
benchmarks. The speedups for the MediaBench bearkkrare 2.97%epic-Compregs
to 13.97% ¢épic-Uncompregs with an average of 4.00%. These results shoat th
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exploiting trivial computations can significanthedease the execution time of the SPEC

benchmarks while moderately decreasing the exetutime of the MediaBench

benchmarks.
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Figure 6.2.1.2: Speedup Due to the Simplification and Elimination of Trivial
Computations for Selected MediaBench Benchmarks, Realistic Processor

Configuration

The SPEC benchmarks have a higher average spdeatuphe MediaBench benchmarks
for two reasons. First, the SPEC benchmarks halgleer percentage of instructions
that could be trivial computations. Second, in$fEC benchmarks, a higher percentage
of those eligible instructions are trivial compudas. The net effect of these two reasons
is that, in the SPEC benchmarks, a higher percentdghe total instructions are trivial

computations.

For each benchmark, in general, the speedup dgemifying and eliminating trivial
computations is correlated to the percentage oftthal instructions that are trivial
computations. For examplemesahas the highest speedup (27.36%) and also theslarg
percentage of instructions that are trivial compate (24.74%). On the other hanip
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has the lowest percentage of instructions thatti@vel computations (1.87%) while
having the second-lowest speedup (1.64%).

However, the correlation between the percentageinsfructions that are trivial
computations and the speedup resulting from expgpthese trivial computations is not
universally true. epic-Uncompressat 13.97%, has the fourth highest speedup aelbss
of these benchmarks, although it has the third #bwercentage of instructions that are
trivial computations. There are at least two reasas to why this correlation does not
hold for all benchmarks. First of all, eliminatirgy trivial computation affects the
performance more than simplifying a trivial compgigia since eliminating a trivial
computation reduces that instruction’s latencyamzycles while simplifying it reduces
it to two cycles (1 cycle to issue the instructaomd another to execute it). Also, although
simplifying a trivial computation could dramaticalfeduce its execution latency, the
simplified instruction still uses a functional ynélbeit a different one, which increases
the amount of functional unit contention. Finalby, definition, only trivial computations

that can be eliminated benefit from early non-sfgote instruction execution.

Second of all, although a benchmark may have aivela large percentage of trivial
computations, if very few of those trivial compuas on are the program’s critical path,
then simplifying or eliminating most of the benchiia trivial computations will not

significantly improve the processor’'s performancéetermining which computations
are critical and which are not is virtually impdssisince it requires storing all dynamic

instructions in memory.)

6.2.2. Enhanced Processor Configuration

One potential criticism of simplifying and elimimag trivial computations is that the
trivial computation hardware merely functions asadditional functional unit or two. In
other words, the processor’s performance couldrbiesly improved by adding a couple
of functional units. To determine the validitytbfs criticism, Figures 6.2.2.1 and 6.2.2.2

show the speedup due to simplifying and eliminatirigial computations for a base
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processor without any functional unit constrairttefe are four functional units of each

type, which matches the maximum issue width).
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Figure 6.2.2.1: Speedup Due to the Simplification and Elimination of Trivial
Computations for Selected SPEC 2000 Benchmarks, Enhanced Processor

Configuration

For the SPEC benchmarks, Figure 6.2.2.1 showsthieaspeedups range from 0.95%
(bzip2 to 20.09% ihesy, with an average of 6.60%. For the MediaBenchchenarks,
Figure 6.2.2.2 shows that the speedups range fr@s?d @dpcm-Decodeto 10.04%
(mpeg2-Encodewith an average of 2.92%. These results shaiveten for a processor
without any functional unit constraints, exploitingivial computations can either
moderately (SPEC) or slightly (MediaBench) decraaseexecution time. Therefore, the
criticism that the trivial computation hardware plgnfunctions as ale factofunctional

unit is generally incorrect.

Although the average speedup for the SPEC benclsmiariairly impressive, two
benchmarksmesaandvortex have significantly lower speedups when the basegssor
uses the enhanced processor configuration. Thedapefor mesadecreases from
27.36% when using the realistic processor confignmato 20.09% when using the
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enhanced processor configuration while the speéaiuportex decreases from 9.34% to
3.66%. The speedup @pic-Uncompresslso exhibits a similar change (13.97% to
4.05%) when using those two configurations. Tlesoa that the speedups decrease is
because the enhanced processor configuration eslieruch of the functional unit
contention, which previously limited the processqgrerformance and allowed the trivial

computation hardware to have more effect.
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Figure 6.2.2.2: Speedup Due to the Simplification and Elimination of Trivial
Computations for Selected MediaBench Benchmarks, Enhanced Processor

Configuration

Therefore, for these three benchmarks, since tleedgps sharply decreases when
additional functional units are added to the basegssor, the criticism of exploiting
trivial computation hardware is somewhat accuratddowever, simplifying and
eliminating trivial computations still decreaseg txecution time of these benchmarks
(and the other benchmarks) by reducing the exeatusitency of some instructions and

by early non-speculative instruction execution.

The speedups for three other benchmatk®|f, epic-Compressand mpeg2-Encode
increased from 13.62% to 13.92%; 2.97% to 6.02%; 284% to 10.04%; respectively,
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when using the enhanced processor configuratianceShe base execution time when
using the enhanced configuration is lower thanlige execution time when using the
realistic configuration, the performance impact edrly non-speculative instruction
execution and reducing the instruction’s executadancy have a larger effect. In other
words, the decrease in the number of cycles duaytmamically simplifying and

eliminating trivial computations accounts for aglr percentage of the total execution

time, which then yields a larger speedup.

6.2.3. Summary

The results in this section show that the Simmliiecn and Elimination of Trivial

Computations can significantly improve the processperformance. For a realistic
processor configuration, adding hardware to exptaitial computations yields an
average speedup of 8.86% for the SPEC benchmaksl&0% for the MediaBench
benchmarks. Even for a processor without any fanat unit constraints, this
enhancement still yields average speedups of 6.60&0 2.92% for the SPEC and
MediaBench benchmarks, respectively. This lasulrediustrates the efficacy that
reducing an instruction’s execution latency and-gpeculatively executing instructions

early can have on the processor’s performance.

6.3. The Results of Applying a Statistically Rigorous Simulatn
Methodology

As described in Chapter 4, a computer architect usnthe results of a Plackett and
Burman design in three ways to improve simulatiethadology. First, when choosing
processor parameter values, the architect can hesd’lackett and Burman design to
determine which parameters have the most effeahenperformance. Second, when
choosing the set of benchmarks, architect can lhesePtackett and Burman design to
determine the similarity between benchmarks. Hin#he architect can use the Plackett
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and Burman design as an analysis tool to finelyrexa the effect that an enhancement
has on the processor.

Using the Plackett and Burman design, Section 6determines the most significant
SimpleScalar processor parameters while Sectior? &&Booses a set of statistically
different benchmarks. Finally, Section 6.3.3 amedy the effect that Instruction
Precomputation and Simplifying and Eliminating Taiv Computations have on the

processor.
6.3.1. Analysis of Processor Parameters for Parameter Value Sxdtion

The third step of the simulation process is parametalue selection. The key to
minimizing the amount of error is to understand akhparameters have the most effect
on the processor’s performance. Table 6.3.1.1eptssthe parameters in descending

order of significance.

Table 6.3.1.1 shows the results of a Plackett anmdhBn design with foldover (X=44) for

a superscalar processor with the parameter valesrsin Tables 5.3.1, 5.3.2., and

5.3.3. Atfter simulating all 88 (2*X) configuratisnthe Plackett and Burman design
results were calculated by first assigning a raokedch parameter based on its
significance (1 = most important). Then the raokseach parameter were averaged
across all benchmarks and the resulting averagésdsm ascending order; the rightmost
column shows the average sum-of-ranks. Averadiagdnks across benchmarks reveals
the most significant parameters across all of teacbhmarks. Consequently, the

parameters with the lowest averages representatameters that have the most effect
across all benchmarks.

This table shows several key results. First, ahdy first ten parameters are significant
across all benchmarks. This conclusion is drawnekgmining the large difference
between the average sum-of-ranks of th& d@rameter, LSQ size, which has an average

sum-of-ranks of 12.6, and the average sum-of-rarikhe 11" parameter, Speculative
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Branch Update, which has an average sum-of-ranks8d#. Furthermore, while the
ranks of the top ten parameters for each benchraeekcompletely different, two
parameters, ROB Entries and L2 Cache Latency aggifisant across all of the
benchmarks since those two parameters invariablg bae of the lowest ranks for every
benchmark. Stating it differently, this means tiegt ROB and the L2 Cache Latency are
the two biggest bottlenecks in the processor acatissf the benchmarks tested in this
dissertation. Therefore, of all the user-configleasimulator parameters, the architect
needs to be especially careful when choosing pasamalues for the number of reorder
buffer entries and the L2 Cache Latency.

Table 6.3.1.1: Plackett and Burman Design Results for All Processor
Parameters; Ranked by Significance and Sorted by the Average Sum-of-

Ranks
Parameter gzip | vpr-Place | vpr-Route | gcc | mesa | art | mcf | equake | ammp | parser | vortex | bzip2 | twolf || Ave
ROB Entries 1 4 1 4 3 2 2 3 6 1 4 1 4 2.8
L2 Cache Latency 4 2 4 2 2 4 4 2 13 3 2 8 2 4.0
Branch Predictor 2 5 3 5 5 27 11 6 4 4 16 7 5 77
Int ALUs 3 7 5 8 4 29 8 9 19 6 9 2 9 9.1
L1 D-Cache Latency 7 6 7 7 12 8 14 5 40 7 5 6 6 || _10.0
L1 I-Cache Size 6 1 12 1 1 12 37 1 36 8 1 16 1] 10.2
L2 Cache Size 9 35 2 6 21 1 1 7 2 2 6 3 43 || 10.6
L1 I-Cache Block Size 16 3 20 3 16 10 32 4 10 11 3 22 3 11.8
Memory Latency First 36 25 6 9 23 3 3 8 1 5 8 5 28| 12.3
LSQ Entries 12 14 9 10 13 39 10 10 17 9 7 4 10| 12.6
Speculative Branch Update 8 17 23 28 7 16 39 12 8 20 22 20 17| 18.2
D-TLB Size 20 28 11 23 29 13 12 11 25 14 25 11 24 18.9
L1 D-Cache Size 18 8 10 12 39 18 9 36 32 21 12 31 7] 195
L1 I-Cache Associativity 5 40 15 29 8 34 23 28 16 17 15 9 21 20.0
FP Multiply Latency 31 12 22 11 19 24 15 23 24 29 14 23 19| 205
Memory Bandwidth 37 36 13 14 43 6 6 29 3 12 19 12 38| _20.6
Int ALU Latencies 15 15 18 13 41 22 33 14 30 16 41 10 16 21.8
BTB Entries 10 24 19 20 9 42 31 20 22 19 20 17 34| 22.1
L1 D-Cache Block Size 17 29 34 22 15 9 24 19 28 13 32 28 26| 22.8
Int Divide Latency 29 10 26 16 24 32 41 32 20 10 10 43 8| 23.2
Int Mult/Div 14 20 29 31 10 23 27 24 33 36 18 26 15| 235
L2 Cache Associativity 23 19 14 19 32 28 5 39 37 18 42 21 12| 23.8
I-TLB Latency 33 18 24 18 37 30 30 16 21 32 11 29 14| 24.4
Instruction Fetch Queue Entries 43 13 27 30 26 20 18 37 9 25 23 34 14| 245
Branch Misprediction Penalty 11 23 42 21 6 43 20 34 11 22 39 37 23| 255
FP ALUs 34 11 31 15 34 17 40 22 26 37 13 42 13 25.8
FP Divide Latency 22 9 35 17 30 21 38 15 43 38 17 39 11 25.8
I-TLB Page Size 42 39 8 37 36 40 7 17 12 26 28 14 39| 26.5
L1 D-Cache Associativity 13 38 17 34 18 41 34 33 14 15 35 15 47 26.8
I-TLB Associativity 24 27 37 25 17 31 42 13 29 30 21 33 22| 27.0
L2 Cache Block Size 25 43 16 38 31 7 35 27 7 35 38 13 40| 27.3
BTB Associativity 21 21 36 32 11 33 17 31 34 43 27 35 29 28.2
D-TLB Associativity 40 32 25 26 22 35 26 26 18 33 26 30 35| 28.8
FP ALU Latencies 32 16 38 41 38 11 22 30 23 27 30 40 29 29.0
Memory Ports 39 31 41 24 27 15 16 41 5 42 29 41 27| 29.1
I-TLB Size 35 34 28 35 20 37 19 18 31 34 34 27 31 29.5
Dummy Factor #2 27 42 21 39 35 14 13 35 41 28 43 18 3q| 29.7
FP Mult/Div 41 22 43 40 40 19 28 38 27 31 31 19 2q1 30.7
Int Multiply Latency 30 41 39 36 14 26 29 21 15 41 37 32 41 30.9
FP Square Root Latency 38 30 40 33 33 5 25 42 42 24 24 38 37 31.6
L1 I-Cache Latency 26 26 32 42 28 38 21 40 38 40 36 25 39 327
Return Address Stack Entries 28 33 33 27 42 25 36 25 39 39 33 36 34 329
Dummy Factor #1 19 37 30 43 25 36 43 43 35 23 40 24 34 334

Second, the effect that each benchmark has onrtdeegsor can be clearly seen. The
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“effect” that a benchmark has on the processor lmandefined as the performance
bottlenecks that are present in the processor winemng that program. For example,
for a compute intensive benchmark, the number o€tianal units will probably be a

performance bottleneck for that processor. Ondter hand, for a memory intensive
benchmark, the sizes of the L1 D-Cache and the &2h€ may be the performance
bottlenecks.

In this case, fomesa since the ranks for the L1 I-Cache size, asswoitigtand block
size are lower than or similar to the ranks for ke D-Cache size, associativity, and
block size, respectively, the performance of th&ruction cache is more of a limiting
factor than the performance of the data cache. niike rates for the L1 I-Cache and the
L1 D-Cache validate this result. When using a $@lztache block, the miss rate of the
L1 I-Cache is similar to or higher than the miseraf the L1 D-Cache. Therefore, it is
not surprising to see that the L1 I-Cache pararseter generally more significant.

Third, several parameters have surprisingly lowksam some benchmarks. For
example, the FP square root latencwinhas a rank of five. Sincat does not have a
significant number of FP square root instructioits, rank does not appear to be
consistent with its intuitive significance. Howeyehat the rank does not show is that
the magnitude of the effect for this parameter icimsmaller than magnitudes of the
effects for the four most significant parameters other words, while ranking the
parameters for each benchmark provides a basiscimparison across benchmarks, it
cannot be used as the sole arbiter in concludiagsigmificance of a parameter’s impact
since the rank does not represent the magnitutteeadffect.

Finally, Table 6.3.1.1 shows that the L1 D-Cacheapeters (size, associativity, block
size, and latency) are not as significant as ongldvexpect. The lowest ranks for the L1
D-Cache size, associativity, block size, and lageare 7 {wolf), 13 @Qzip), 9 (@art), and 5

(vorte®, respectively. Given the amount of effort th&e tcomputer architecture
community has put into improving memory performanzee would expect that the L1
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D-Cache parameters would have much lower rank®reftre, the key question is: What
are not the L1 D-Cache parameters more significant?

One potential reason is that the specific inputisat is used for these benchmarks does
not adequately stress the memory hierarchy. Wiserguhe large input set, the L1 D-
Cache miss rates for those benchmarks are much ldhaa when using the reference
input set [Yi02-2] since the reference input setialy has a much larger memory
footprint. Therefore, since the high and low valder the L1 D-Cache parameters were
based on the values present in commercial processolwere not downsized to account
for the smaller memory footprint, the cache mistesaare subsequently lower. One
consequence of the lower-than-expected cache mates ris that the L1 D-Cache
parameters have less impact on the performancédigleer rank).

To minimize the effect of using an input set thabduces a smaller-than-expected
memory footprint, one solution is to use smallduga for the L1 D-Cache and L2 Cache
size and associativity. Therefore, to determine/ much of an effect that the lower
cache miss rates have on ranking of the cache paeasn the low value of the L1 D-
Cache size was reduced from 4 KB to 1 KB whileltive value of the L2 Cache size was
reduced from 256 KB to 64 KB. The associativitedsboth caches were not reduced

since they were at the absolute minimum value ($wa

Table 6.3.1.2 shows parameters in descending arfieignificance when using the

reduced cache size configurations.

Table 6.3.1.2 show that reducing the sizes of theD-Cache and the L2 Cache to
account for using a reduced input set significactianges the effect that the memory
parameters have on the performance. The sumsikéffar the L1 D-Cache size, L1 D-
Cache associativity, the L2 Cache size, and th€&a¢he associativity decreases by 71,
86, 86, and 137, respectively. Accordingly, thgpamance of these four parameters also
increases. The L1 D-Cache increases frofhrb8st important parameter to the™ ghe

L1 D-cache associativity changes froni"2® 17", the L2 Cache size increases froth 7
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to 2% and the L2 Cache associativity changes frofi 228". In other words, these four
parameters have a much larger effect on the pesfocen when the cache sizes are
downsized to compensate for the smaller memorypfout

Table 6.3.1.2: Plackett and Burman Design Results for All Processor
Parameters; Ranked by Significance and Sorted by the Average Sum-of-

Ranks; Reduced Cache Sizes

Parameter gzip | vpr-Place | vpr-Route | gec | mesa | art | mcf | equake | ammp | parser | vortex | bzip2 | twolf || Ave

ROB Entries 2 4 2 7 3 3 3 3 6 3 7 1 5 3.8

L2 Cache Size 1 8 1 2 19 1 1 5 2 1 3 2 6 4.0

L2 Cache Latency 6 2 5 3 2 16 5 2 12 4 2 7 2 5.2
Memory Latency First 4 9 3 4 21 2 2 6 1 2 4 4 7 5.3
Int ALUs 5 10 6 9 4 33 6 8 19 8 11 3 10| 10.2

L1 I-Cache Size 7 1 15 1 1 27 17 1 36 17 1 25 1) 115

L1 D-Cache Latency 11 6 10 8 10 17 30 7 42 7 9 5 8 13.1
L2 Cache Associativity 10 20 9 6 26 4 9 10 38 5 8 13 14| 13.2
L1 |-Cache Block Size 19 3 41 5 15 8 26 4 10 12 5 22 41 134
Branch Predictor 9 7 8 11 5 34 25 9 4 6 35 12 9| 134
Memory Bandwidth 13 30 13 10 38 7 4 12 3 9 13 10 17| 13.8
L1 D-Cache Size 8 5 4 14 41 6 20 19 26 16 6 14 3| 14.0
LSQ Entries 20 13 12 13 14 23 35 15 17 27 10 6 11 16.6
Instruction Fetch Queue Entries 17 18 18 22 24 9 11 27 9 14 40 18 241 19.3
FP Multiply Latency 26 12 21 12 20 28 33 11 23 26 14 24 13 20.2
L1 D-Cache Associativity 12 37 19 24 16 12 24 14 14 10 31 11 39| 20.2
L1 |-Cache Associativity 3 33 14 17 9 43 19 35 16 24 12 9 32| 20.5
L2 Cache Block Size 14 38 7 31 27 36 7 23 7 18 29 8 33| 21.4
L1 D-Cache Block Size 16 42 34 20 17 10 29 13 29 11 42 27 34| 24.9
BTB Entries 18 22 31 27 8 31 39 16 22 21 36 16 40| 25.2
I-TLB Page Size 33 31 11 42 34 18 15 28 13 41 21 19 21 25.2
Dummy Factor #2 23 36 16 23 32 26 22 26 43 20 25 17 23 255

Int Mult/Div 25 16 27 39 11 15 40 34 33 29 18 41 19 26.4
Dummy Factor #1 22 43 29 26 29 13 21 18 35 13 38 21 39 26.4
FP ALUs 32 11 23 33 33 11 36 43 25 32 16 39 12| 26.6

D-TLB Size 40 41 36 36 28 14 10 17 28 22 26 15 3q 26.8
D-TLB Associativity 28 17 25 25 23 32 42 33 18 38 19 31 24 27.0
FP ALU Latencies 21 24 32 15 39 21 23 41 24 15 30 29 41 27.3
FP Square Root Latency 31 26 43 43 36 5 12 29 41 19 17 26 31 27.6
Int Divide Latency 34 14 42 29 25 29 41 25 20 23 20 42 14| 27.7
I-TLB Size 30 25 17 16 22 37 27 40 32 43 15 38 19 27.8

FP Mult/Div 27 35 33 18 37 22 28 31 27 25 22 20 37 27.8
Branch Misprediction Penalty 41 40 24 30 6 24 8 39 11 36 27 35 420 27.9
Speculative Branch Update 15 27 40 40 7 41 38 22 8 37 32 30 26| 27.9
Memory Ports 24 39 20 37 30 20 14 38 5 30 39 28 43 28.2

Int Multiply Latency 39 32 28 21 13 40 31 42 15 42 24 37 19 29.4
Return Address Stack Entries 43 28 37 19 43 38 16 24 39 31 23 33 24 30.5
FP Divide Latency 37 15 22 32 35 35 32 20 40 35 34 36 2§ 30.8
L1 I-Cache Latency 38 19 30 38 31 19 43 32 37 28 28 32 27 30.9
I-TLB Associativity 29 34 35 34 18 30 34 21 31 33 41 34 29 31.0
BTB Associativity 42 29 26 35 12 25 18 37 34 34 37 43 3§ 315
Int ALU Latencies 36 21 38 28 42 42 13 36 30 39 43 23 29 32.0
I-TLB Latency 35 23 39 41 40 39 37 30 21 40 33 40 30 34.5

Another reason that the L1 D-Cache parameters aremore significant is that the
memory hierarchy o$im-outordertends to overestimate the memory performance since
it does not model memory contention. In additisim-outorderhas a shorter-than-
normal pipeline, does not partition the executi@me¢ does not replay traps, and has
fewer pipeline flushes. The net effect of thessdes is that the average IPC “error” of
SimpleScalar for eight selected SPEC 2000 benchsniarl86.7% [Desikan01]. Given
this rather large margin of error, the unrealishemory behavior, and the smaller-than-
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expected memory footprint, it is not too surprisimgsee that the ranks of the L1 D-

Cache parameters are not as low as expected.

The results in this section illustrate how a Pléclkexd Burman design can be used to
identify the key processor parameters, which iy veseful when the computer architect
is trying to select processor parameters values. this example, there are 10 key
processor parameters (out of 41), with the numideR@B entries and the L2 Cache

Latency being the two most important.

6.3.2. Analysis of Benchmarks for Benchmark Selection

The fourth step of the simulation process is bermgknselection. As described in
Chapter 4, a potential pitfall in choosing benchimais that the architect may
inadvertently choose a set of the benchmarks tretat representative of the target
applications. One way of avoiding this problenmtasunderstand the effect that each
benchmark has on the processor in greater detditlan to select benchmarks that are
dissimilar. Two benchmarks are defined to be similthey have a similar effect on the

processor.

Starting with the results of the Plackett and Burrdasign, the first step in determining
whether two benchmarks have similar effects on phecessor is to calculate the
Euclidean distance between all possible pair-wmalgnations of benchmarks. Since
the Plackett and Burman design results for eackhyark is simply a vector of ranks,
where each value in the vector corresponds toahie for that parameter, the formula for

computing the Euclidean distance is simply:

Distance = [(xy1)? + (-Y2)* + ... + (1Y n1)® + Xy )]

In this formula, n is the number of parameters &Mil= [x, Xz, ... , %-1, X)] and Y = [y,
Y2, ..., Yo-1, Yn] @re the vector of ranks that represent benchmWérksd Y, respectively.
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For example, the Euclidean distance betwgzap andvpr-Place using the ranks from
Table 6.3.1.1, is as follows:

Distance = [(1-4)+ (4-2F + ... + (28-33§ + (19-37§]" = [8058]* = 89.8
In the second step, the benchmarks were clustegethter based on their Euclidean

distances. And in the third step, the final clusgetree is plotted. Figure 6.3.2.1 shows
the output of the cluster analysis for the benclksand input sets given in Table 6.4.3.
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vpr-Place twolf gcc vortex equake gzip mesa vpr-Route bzip2z parser mcf ammp art

Figure 6.3.2.1: Cluster Analysis Results (i.e. Dendrogram) for the Large
MinneSPEC Input Set

In Figure 6.3.2.1, the benchmarks are arrangedgakhe x-axis while the y-axis
represents the level of dissimilarity between amyo tbenchmarks (or group of
benchmarks). Whenever two benchmarks are connégtedhorizontal line, that means
at that level of dissimilarity and higher, thoseotwenchmarks are considered to be
similar. The level of dissimilarity is simply tHeuclidean distance. For example, since
vpr-Routeandtwolf are connected together at a dissimilarity of 35f@B dissimilarities
(or Euclidean distances) less than 35.19, those amchmarks are categorized into
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separate groups. However, when the level of ditmity exceeds 35.19, they are
categorized into the same group. All benchmarkfiensame group are considered to be

similar.

The first step in selecting a final group of benahiks to simulate from the dendrogram is
to draw a horizontal line at a dissimilarity of Uhen the horizontal line should be moved
up until it the number of vertical lines that itensects matches the maximum number of
benchmarks that can be simulated. The numbertefsiecting vertical lines represents
the number of groups that the benchmarks have blssified into. At that level of
dissimilarity, all benchmarks within the same graarp considered to be similar while
any benchmark in another group is considered taibgmilar. The final step in the
benchmark selection process is to select one bear&inom each group to form the final
set of benchmarks.

For example, assume that the architect can simalateximum of eight benchmarks.
Therefore, the 13 benchmarks need to be categaniectight different groups. From a
dissimilarity of O to dissimilarity of 35.18, the8 benchmarks are in 13 different groups.
From 35.19 to 45.73, the 13 benchmarks are in fi@reint groups becausgr-Placeand
twolf are categorized into the same group. From 49 B4158, the 13 benchmarks are in
11 different groups aftevpr-Routeand bzip2 are categorized together. This process
continues until the 13 benchmarks are categorimtd desired number of different
groups. Table 6.3.2.1 shows the final categoompavith eight groups.

Table 6.3.2.1: Example of Benchmark Selection, Choosing Eight
Benchmarks from Thirteen

Group Benchmarks Final Set

I gzip, mesa gzip
Il vpr-Place twolf vpr-Place
Il vpr-Route parser, bzip2| vpr-Route
\Y gcg vortex gcc

V art art

VI mcf mcf

Wil equake equake

VI ammp ammp
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The middle column of Table 6.3.2.1 shows the bergksin each group while the
rightmost column shows the benchmark that werectglefrom each group to form the

final set.

The final set of benchmarks consists of five integenchmarksdzip, vpr-Place vpr-
Route gcg andmcf) and three floating-point benchmarlkat( equake andammp. In
addition, two of the benchmarkar{ andmcf) have very high cache miss rates (over 20%
for a 32 KB, 2-way associative cache) while theeotsix have comparatively low miss
rates (less than 5% for a 32 KB, 2-way cache). rdthee, the final set of benchmarks
consists of benchmarks that would come from differgroups when categorizing
benchmarks using existing methods (integer velsasirig-point, etc.).

Finally, it is important to note that it may be fideto consider other factors when
selecting a benchmark from each group. In thismgte, one reason to choogeip
instead ofmesafrom Group I, is becausgzip has a much lower instruction count
although those two benchmarks are statisticallylaim Similarly, one reason to choose
vpr-Routeover parserandbzip2from Group Il is to match the choice gbr-Placefrom

Group I

The results in this section illustrate how a Pléclkexd Burman design can be used to
help the computer architect select a set of siEllt different benchmarks. In
particular, these results illustrated how eight dbemarks could be selected from the
candidate list of 13 SPEC 2000 benchmarks by &ilassifying them into eight groups
and then selecting one benchmark from each group.

6.3.3. Analysis of the Effect of Processor Enhancements
The sixth and final step of the simulation proceéssanalyzing the effect of an

enhancement. To illustrate how a Plackett and Buaraesign can be used in this way,

this technique was used to analyze the effects limgtruction Precomputation and
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Simplifying and Eliminating Trivial Computations dhan the processor. Table 6.3.3.1
presents the Plackett and Burman design resultdn&iruction Precomputation while
Table 6.3.3.2 does the same for Simplifying andhielating Trivial Computations.

Table 6.3.3.1 shows the results for InstructiorcBmgputation for Profile B, Run A using
a 128-entry PT. Table 6.3.3.1 represents ther“afi@se while Table 6.3.1.1 represents
the “before” case, that is, the unenhanced processo

Table 6.3.3.1: Plackett and Burman Design Results for All Processor
Parameters When Using Instruction Precomputation; Ranked by

Significance and Sorted by the Average Sum-of-Ranks

Parameter gzip | vpr-Place | vpr-Route | gcc | mesa | art | mcf | equake | ammp | parser | vortex | bzip2 | twolf || Ave

ROB Entries 1 4 1 4 3 2 2 3 6 1 4 1 4 2.8

L2 Cache Latency 4 2 4 2 2 4 4 2 13 3 2 8 2 4.0
Branch Predictor 2 5 3 5 5 28 11 8 4 4 16 7 5 7.9

L1 D-Cache Latency 7 6 5 7 11 8 14 5 40 7 5 4 6 9.6
L1 |-Cache Size 5 1 12 1 1 12 38 1 36 8 1 15 1] 10.2

Int ALUs 6 8 8 9 8 29 9 13 20 6 9 3 9 || 105

L2 Cache Size 9 35 2 6 22 1 1 6 2 2 6 2 43 || 10.5

L1 I-Cache Block Size 15 3 20 3 14 10 32 4 10 11 3 20 3| 114
Memory Latency First 35 25 6 8 18 3 3 7 1 5 7 6 271 11.6
LSQ Entries 13 14 9 10 15 40 10 9 17 9 8 5 10f 13.0
D-TLB Size 21 28 11 24 25 13 12 10 25 14 25 10 24| 18.6
Speculative Branch Update 8 20 25 29 7 16 39 11 8 20 21 22 19 18.8
L1 |-Cache Associativity 3 41 15 28 6 34 23 28 16 17 11 9 21 19.4
L1 D-Cache Size 18 7 10 12 42 19 8 35 32 21 13 32 71 19.7

FP Multiply Latency 31 12 22 11 19 24 15 22 24 28 14 24 14 20.3
Memory Bandwidth 33 36 13 14 43 6 6 31 3 12 20 11 38| _20.5
BTB Entries 10 23 19 20 9 41 31 20 22 19 19 16 34| 21.8

Int ALU Latencies 16 15 18 13 40 22 33 14 31 16 41 12 16 22.1

L1 D-Cache Block Size 17 30 34 22 16 9 24 19 26 13 33 25 26| 22.6
Int Divide Latency 30 10 26 17 24 33 40 33 19 10 10 41 8| 23.2

L2 Cache Associativity 23 19 14 19 33 27 5 39 37 18 42 21 12| 23.8
Int Mult/Div 14 21 30 31 12 23 27 23 33 37 18 27 19 23.9

|I-TLB Latency 32 17 24 18 34 30 30 16 21 33 12 29 179 241
Instruction Fetch Queue Entries || 43 13 27 30 23 20 19 37 9 25 23 34 14| 24.4
Branch Misprediction Penalty 11 24 41 21 4 43 20 32 11 22 39 35 23 25.1
FP Divide Latency 20 9 36 16 28 21 37 15 43 38 17 38 11 25.3
FP ALUs 34 11 31 15 38 17 41 24 27 36 15 43 13 265

I-TLB Page Size 42 38 7 38 39 39 7 17 12 26 28 14 39| 26.6

L1 D-Cache Associativity 12 39 17 35 17 42 34 34 14 15 36 17 4 27.2
L2 Cache Block Size 25 43 16 37 31 7 35 27 7 35 38 13 40| 27.2
I-TLB Associativity 26 27 38 25 20 31 42 12 29 30 22 33 22 275
BTB Associativity 22 18 35 32 10 32 17 30 34 43 27 36 29 27.8
D-TLB Associativity 40 32 23 26 27 35 25 26 18 32 26 28 39 28.7
Memory Ports 39 31 39 23 26 15 16 40 5 42 30 40 29| 28.8

FP ALU Latencies 37 16 37 41 37 11 21 29 23 27 29 42 28| 29.1
I-TLB Size 36 34 28 34 21 37 18 18 30 34 34 30 32| 29.7
Dummy Factor #2 28 42 21 39 32 14 13 36 42 29 43 18 3q 29.8

Int Multiply Latency 29 40 42 36 13 26 29 21 15 41 35 31 411 30.7
FP Mult/Div 41 22 43 40 41 18 28 38 28 31 31 19 2(| 30.8

FP Square Root Latency 38 29 40 33 35 5 26 43 41 24 24 39 37| _31.8
Return Address Stack Entries 27 33 33 27 36 25 36 25 39 40 32 37 31 324
L1 I-Cache Latency 24 26 32 42 29 38 22 41 38 39 37 26 33 32.8
Dummy Factor #1 19 37 29 43 30 36 43 42 35 23 40 23 36| 335

Comparing these two tables yields two conclusiobsug the effect that Instruction
Precomputation has on the processor. First of th#, same parameters that were
significant for the base processor are also sicamti for the processor with Instruction
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Precomputation. While Instruction Precomputatibarges the relative ordering of the
significant parameters, with respect to each othatpes not change which parameters

have the greatest significance.

Second, of the significant parameters, the parantbtg has the biggest change in its
overall effect (defined as the biggest changesiavierage sum-of-ranks) is the number of
integer ALUs. Instruction Precomputation changesaverage sum-of-ranks from 9.1 in
the base processor to 10.5. This result is ineliti reasonable since most of the
instructions that Instruction Precomputation eliateés would have executed on the
integer ALUs. Therefore, by using Instruction Rn@putation, the impact of the number

of integer ALUs on the processor’s performance egses in significance.

Although these results show that Instruction Pregmatation improves the processor’s
performance by reducing functional unit contenti@gnalso improves the processor’s
performance by decreasing the execution latenagdiindant computations. However,
since the base SimpleScalar processor has a fikedslength pipeline, this latter effect
appears to be relatively unimportant.

Table 6.3.3.2 shows the results for Simplifying dfldninating Trivial Computations
when using the realistic base processor configumati Tables 6.3.1.1 and 6.3.3.2
represent the before and after cases, respectively.

Simplifying and Eliminating Trivial Computations $a similar effect on all processor
parameters. That is, the performance bottlenesktheé base processor do not get
substantially better or worse when hardware toaaixplivial computations is added to
the processor. There are two reasons to suppsrtanclusion. First, the order of the
ten most significant parameters is the same addbe processor. Since their sums-of-
ranks are nearly identical, this enhancement hasra similar on the most important

processor parameters.
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Second, there is relatively little difference betwethe average sums-of-ranks for the
other parameters. The maximum difference betwblenaverage sums-of-ranks for a
parameter with and without adding the trivial congpion exploitation hardware is 1.3.
Although this difference rivals the change in trerage sum-of-ranks for the Number of
Integer ALUs when Instruction Precomputation is etido the base processor, this
difference is less meaningful because it is a sngércentage of the average sum-of-
ranks for that parameter. In other words, sinosé¢hparameters are very insignificant to
being with, large changes in their average sumsuoifs do not imply that the
enhancement has a large effect on that parameter.

Table 6.3.3.2: Plackett and Burman Design Results for All Processor
Parameters When Simplifying and Eliminating Trivial Computations;
Ranked by Significance and Sorted by the Average Sum-of-Ranks

Parameter gzip | vpr-Place | vpr-Route | gcc | mesa | art | mcf | equake | ammp | parser | vortex | bzip2 | twolf || Ave

ROB Entries 1 4 1 4 3 2 2 3 6 1 4 1 4 2.8

L2 Cache Latency 4 2 4 2 2 4 4 2 13 3 2 8 2 4.0
Branch Predictor 2 5 3 5 5 27 11 8 4 4 16 7 5 7.8

Int ALUs 6 8 7 8 6 29 9 6 19 7 9 2 9 9.6

L1 D-Cache Latency 7 6 5 7 12 8 14 5 40 6 5 6 6 9.8
L1 I-Cache Size 5 1 12 1 1 11 38 1 36 8 1 16 1] 10.2

L2 Cache Size 9 40 2 6 21 1 1 7 2 2 6 3 43| 11.0

L1 I-Cache Block Size 16 3 20 3 15 10 32 4 10 11 3 21 3| 116
Memory Latency First 36 28 6 9 20 3 3 9 1 5 7 5 27| 122
LSQ Entries 12 16 9 10 14 43 10 10 17 10 8 4 10 13.3
Speculative Branch Update 8 18 26 29 7 16 39 13 8 20 21 20 18| 18.7
L1 D-Cache Size 18 7 11 12 43 18 8 25 31 21 12 33 7] 18.9
D-TLB Size 20 27 10 23 30 13 12 12 25 14 27 11 25 19.2

FP Multiply Latency 31 11 22 11 19 24 15 17 24 26 14 24 17 19.6
Memory Bandwidth 37 41 13 14 39 6 6 22 3 12 20 12 39| 20.3
L1 I-Cache Associativity 3 38 16 28 8 34 23 43 16 16 13 9 21| 20.6
BTB Entries 10 22 18 20 9 42 30 15 22 18 19 17 34 21.2

Int Divide Latency 29 10 24 17 25 33 40 21 20 9 10 43 8| 22.2

L1 D-Cache Block Size 17 29 31 22 16 9 24 14 27 13 34 28 26| 22.3
Int ALU Latencies 15 14 19 13 42 21 33 18 30 17 43 10 16| 22.4

L2 Cache Associativity 23 15 14 19 33 28 5 38 37 19 39 22 131 235
Branch Misprediction Penalty 11 23 43 21 4 40 20 19 11 22 42 36 23| 24.2
Int Mult/Div 14 24 30 31 11 23 27 34 33 37 17 26 14 247

FP Divide Latency 21 9 34 16 26 22 37 11 43 38 18 38 11 24.9
Instruction Fetch Queue Entries || 43 13 27 30 27 20 18 40 9 25 23 35 15 25.0
|I-TLB Latency 32 20 23 18 37 30 31 24 21 33 15 27 19 254

L1 D-Cache Associativity 13 39 15 34 18 41 34 23 14 15 37 15 41 26.1
FP ALUs 34 12 33 15 31 17 41 32 26 36 11 41 14 26.2

BTB Associativity 22 19 37 32 10 32 17 20 34 43 26 34 24| 26.9
I-TLB Page Size 42 35 8 38 36 39 7 26 12 27 29 14 38| 27.0
I-TLB Associativity 25 25 36 25 17 31 42 16 29 29 22 32 22| 27.0
L2 Cache Block Size 26 42 17 37 32 7 35 41 7 35 36 13 40| 28.3
Memory Ports 40 30 41 24 28 14 16 29 5 42 31 40 29 28.4
D-TLB Associativity 39 33 25 26 22 35 25 37 18 32 25 29 3q 29.4
FP ALU Latencies 33 21 38 41 38 12 21 28 23 30 30 42 28| 29.6
Dummy Factor #2 28 36 21 39 34 15 13 42 41 28 40 18 3 298
FP Mult/Div 41 17 42 40 40 19 28 39 28 31 32 19 2(| 30.5
I-TLB Size 35 31 28 35 23 36 19 27 32 34 33 30 33| 30.5

FP Square Root Latency 38 32 39 33 35 5 26 33 42 24 24 39 37| _31.3
Int Multiply Latency 30 43 40 36 13 26 29 31 15 41 38 31 47 31.9
Dummy Factor #1 19 37 29 43 24 37 43 30 35 23 41 23 39 32.2

L1 I-Cache Latency 24 26 35 42 29 38 22 36 38 39 35 25 31 32.3
Return Address Stack Entries 27 34 32 27 41 25 36 35 39 40 28 37 30 33.2
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The results in this section illustrate how a Pléclkexd Burman design can be used to
help the computer architect analyze the effect dhatocessor enhancement (hardware or
software) has on the processor. The two exampkaswere given examined the effect
that Instruction Precomputation and that Simplidyinand Eliminating Trivial
Computations had on the processor. In particulae, results show that Instruction
Precomputation improves the processor’'s performancelecreasing the amount of
functional unit contention while adding hardwarestloit trivial computations does not
significantly create or relieve any performancetlboecks.

6.3.4. Summary

The results in this section illustrate how a Pléclked Burman design can be used to
improve simulation methodology. More specifically,computer architect can use a
Plackett and Burman design to identify the moshiitant processor parameters, which
is important to know when choosing parameter valu€kose results can also be used
categorize benchmarks into groups, which is helpften choosing benchmarks for
simulations. Finally, the architect can use a ld&cand Burman design to determine the
effect of a processor enhancement by comparingstines-of-ranks for each processor

parameter with and without the processor enhancemen
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Chapter 7

Related Work

The scope of previous work that is related to dlgsertation extends from work that has
focused on value locality, value reuse and pregtictiand improving processor
performance by exploiting trivial computations tmglation methodology and the use of

statistics in computer architecture research.

7.1. Value Locality

Value locality is the “likelihood of the recurrencé a previously seen value within a
storage location” in a processor [Lipasti96-1]. dther words, value locality is the

probability that an instruction produces the sammpuat value.

Since their output value is constant, redundantpedations exhibit value locality. As

defined in Chapter 1, a redundant computation é@mputation that the processor had
performed earlier in the program. However, in tpaticular case, since their input
values are constant (which along with the operapimduces a constant output value),
these instructions specifically exhibit input valoeality. The difference between input

and “normal” (output) value locality is that in thermer, repetitive and constant input
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values are the reason for the repetitive outpwieslwhile in the latter, the input values
may differ while the output value is repetitive.

Section 7.1.1 summarizes the previous work thamied the amount of redundant
computations that are present in SPEC benchmarkie v@ections 7.2.1 and 7.2.2
describe solutions from the two major approache®loiting value locality: value

reuse and value prediction.

7.1.1. Redundant Computations

Sodani and Sohi analyzed the amount of instructepetition (amount of redundant
computation at the local-level) in the integer benarks of the SPEC 95 benchmark
suite [Sodani98]. Their results showed that 56(68mpressto 98.8% (n88ksim of the
dynamic instructions were repeated (i.e. had theesmputs — and, of course, produced
the same result — as an earlier instance of theust®n). Therefore, in the case of
m88ksim almost all of the dynamic instructions were regamt with another dynamic
instruction. This shows that in typical prograrssch as those from the SPECint95

benchmark suite, a very large percentage of thepatations are redundant.

Their results also showed that, of the static utdtons that execute more than once, most
of the repetition in the dynamic instructions isedio a small sub-set of the dynamic
instructions. More specifically, with the exceptiof m88ksim less than 20% of the
static instructions that execute at least twicerasponsible for over 90% of the dynamic
instructions that are redundant. FRo88ksimthose static instructions are responsible for

over 50% of the instruction repetition.

However, it is important to reiterate that this @amnly analyzed the amount of
redundant computation present at the local-level.

Gonzalezet al [Gonzalez98] analyzed the amount of instructigretigion in the integer
and floating-point benchmarks of the SPEC 95 bereckrmuite. Like [Sodani98], their
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results were for instruction repetition at only tbeal-level. Their results showed that
53% @pply) to 99% bhydro29 of the dynamic instructions were repeated. Furtiore,

the geometric means of all the benchmarks, thegémtdoenchmarks only, and the
floating-point benchmarks only were 87%, 91%, aB&oc8respectively. Consequently,
there is not a significant difference in the amoahinstruction repetition between the
integer and floating-point benchmarks. Overallgithresults confirmed the key
conclusion from [Sodani98], that there is a sigwifit amount of instruction repetition

(local-level redundant computation) available ipityl programs.

7.2. Value Reuse and Prediction

The two major techniques of exploiting value logalare value reuse (also called

instruction reuse and instruction memorization@i®8]) and value prediction.

7.2.1. Value Reuse

As explained in Section 1.4, value reuse explatundant computations by storing the
opcode, input operand values, and output valueeidundant computations into the value
reuse table (VRT). When the current instructioofscode and input operand values
match an opcode and input operand value in the MR@&,processor can bypass the

execution of that instruction and simply retrieteeautput value from the VRT.

When exploiting local-level redundant computatiaihe PC is used as an index into the
VRT. However, when exploiting global-level reduntacomputations, some

combination of the opcode and input operand vadueseeded.
Sodani and Sohi [Sodani97] implemented a dynamitievaeuse mechanism that

exploited local-level only value reuse and testedvith selected SPEC 92 and 95

benchmarks. Since their value reuse mechanismoigqbl local-level redundant
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computations, they consequently indexed their vaduese table with each instruction’s
PC.

Their value reuse mechanism produced speedups dbP%%, 2% to 26%, and 6% to
43% for a 32 entry, a 128 entry, and a 1024 entispectively, value reuse table. While
the speedups in that paper are comparable to thosestruction Precomputation, given
in Section 6.1 of this dissertation, their approaskeds additional hardware to
dynamically update the VRT and does not exploibgldevel redundant computations,

as compared to Instruction Precomputation.

By contrast, Molinaetal [Molina99] implemented a dynamic value reuse maigdm that
exploited value reuse at the both the global andHtevels. To test the performance of
their value reuse mechanism, they simulated seledat¢éeger and floating-point
benchmarks from the SPEC 95 benchmark suite. Hpgroach is very area-intensive
since it uses three separate value reuse tabtesise global and local level computations
and memory instructions. As can be expected, SpEedups are somewhat correlated to
the area used. For instance, their value reuséanexm produced speedups of 3% to
25% with an average of 10% when using a 221 KBetabVhen the table area is reduced
to a more realistic 36 KB, the speedups droppedramge of 2% to 15% with an average
of 7%. While their speedups are comparable toethmesented in Chapter 6 of this
dissertation, to achieve a similar speedup, thppr@ach requires approximately ten
times the area that Instruction Precomputation 2% KB versus 26 KB).

Citron et al [Citron98, Citron00-1, Citron00-2] proposed usidgtributed value reuse
tables that are accessed in parallel with the fonat units. This approach, called
memoziation, is best suited to bypass the executiblong latency instructions, e.g.
integer divide; floating-point multiply, divide, dnsquare root. Since their mechanism
reduces the execution time of redundant computationa single cycle, targeting only
long latency instructions maximizes the performagaen due to this approach. As a
result, although this mechanism produces speedpps W20%, it is best suited for

benchmarks with a significant percentage of higbray instructions, such as the
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MediaBench benchmark suite. There are two kegwdifices between this approach and
Instruction Precomputation. The first differencetlat this approach uses distributed
memorization tables, each of are which are locaidiedcent next to a functional unit,
instead of a monolithic Precomputation Table. &/Isinaller tables have a faster access
time, all entries across all tables may not be useansequently, some tables may be full
(and in the process of replacing entries) whileeptables have empty entries. The other
key difference is that the processor can accessiéimoization tables only in the execute
stage while the VRT is usually accessed in the diear issue stage. As a result, this
approach cannot reuse the computations for single ¢atency instructions since there is
no difference between the memoization table ade¢sscy and the execution latency for
those instructions. The effect of this differemcéhat there are fewer instructions for this
approach to reuse, as compared to value reusegvdfiearithmetic, logical, and load

instructions can be reused.

Huang and Lilja [Huang98, Huang99] introduced bédick reuse, which is value reuse
at the basic block level. This approach uses tmepder to identify basic blocks where
the inputs and outputs were are relatively conssaat stable. Then, at run-time, the
processor caches the inputs and outputs for thosgiter-identified basic blocks after
they finish executing. Subsequently, before the esecution of that basic block, the
current inputs of that basic block are compared il cached entries. If a match is
found, then the register file and memory are uptiatith the correct results. Otherwise,

the processor executes the basic block normally.

They showed that the average reused basic blogedam size from 4.14 instructions
(wordcounj to 5.95 instructionsjpeg). This approach produced speedups of 1% to 14%
with an average of 9%. The key difference betw#sa approach and Instruction
Precomputation is in the level of granularity. Baslock reuses multiple instructions at
a time while Instruction Precomputation reuses atiene. However, the corresponding
hardware cost is higher; each basic block reude &tiry requires at least 60 bytes of

storage (as compared to 13 bytes for Instructi@edmputation).
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In summary, the previous approaches produce coflgarar lower speedups, as
compared to Instruction Precomputation, while comgag either a little more area or, in
some cases, an order of magnitude more area ane prbbably having a higher table
access time. The other key difference is thafptlesious approaches allow for dynamic
table replacement while Instruction Precomputatioas not.

Azametal [Azam97] proposed adding a dynamic reuse buffdraanextra pipeline stage
(to access the reuse buffer) to decrease the p@tepower consumption. Their results
showed that an eight-entry reuse buffer decredsegadawer consumption by up to 20%
while a 128-entry reuse buffer decreased the paarsumption by up to 60%. While
one of the goals of this solution is to decreasepibwer consumption while maintaining
the performance (i.e. the same execution timehefldase processor, since performance
numbers were not given in this paper, it is noarclethe performance goal was met.

Weinberg and Nagle [Weinberg98] proposed usingevakuse to reduce the latency of
pointer traversals by caching the elements of tater chain. This approach reduced
the execution latency by up to 11.3%. Howevers #@pproach differs with Instruction

Precomputation in three respects: 1) It only targpbinters, 2) It uses dynamic

replacement, and 3) It consumes a very large anafiarea (approximately 600 KB).

Finally, Gonzalezt al [Gonzalez98] measured the maximum performancenpateof
local-level value reuse, given an infinite VRT, ex@-cycle reuse latency (the number of
cycles need to access the VRT and forward the buglue to the redundant instruction),
and a processor without any structural hazardseirTiesults showed that, for these
benchmarks and for the given hardware assumptibesaverage overall speedup is 18.7
(i.e. 1770%). The maximum possible speedup rafiges 1.5 applu) to 2231 {urb3d.

7.2.2. Value Prediction

Value prediction is another microarchitectural teghe that exploits value locality. The

value predication hardware predicts the outputeslof future instances of each static
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instruction based on its past values. After tredjmting the output value, the processor
forwards that predicted value to any dependentruosbns and then speculatively
executes the dependent instructions based on tbdicrgd value. To verify the
prediction, the processor has to execute the pestimstruction normally. If the
prediction is correct (i.e. the predicted value chas the actual value), then the processor
resumes normal (non-speculative) execution and cammit the values of the
speculatively executed dependent instructionsthdfprediction is incorrect, then all of
the dependent instructions need to be squashedreasdecuted. This is the key
difference between value reuse and value predichamely, that value prediction is

speculative while value reuse is not.

7.2.2.1. Simple Value Predictors

Lipasti et al [Lipasti96-1, Lipasti96-2] introduced the concegitvalue locality and a
means — last value prediction — to exploit it. tbhemue prediction stores the last output
value of each static instruction into the valuedmon table. Upon encountering the
next instance of that static instruction, the pssoe uses the last output value as the
predicted value. They showed that the averagedspefor the last value prediction of
load instructions is 6%, with a maximum of 17% [a§ti96-1]. Meanwhile, the average
speedup for arithmetic and load instructions is Wih a maximum of 54% [Lispasti96-
2].

However, the accuracy of last value predictionasywoor when trying to predict the
values of computations such as incrementing thp loduction variable. Therefore, to
improve the prediction accuracy of last value medn for these and similar

computations, Gabby and Mendelson [Gabbay98] pexpa@sother value predictor: the
stride-value value predictor. By adding the défere of the last two output values (i.e.
the stride) for that instruction to the last vafoe that instruction, this value predictor is
able to accurately predict the output values foplinduction variables. Note that when
the stride value equals to zero, the stride valtediptor functions as a last value

predictor.
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For the integer benchmarks of the SPEC 95 benchmat&, they showed that, for ALU
instructions, the prediction accuracy of the lasi atride value predictors were 52.8%
and 61.1%, respectively. The improved predictioousacy subsequently increases the
amount of ILP significantly. For example, for88ksim stride value prediction increases
the amount of ILP from 7 IPC to 34 IPC while lastiue prediction only increases the
amount of ILP to 13 IPC. (Note: Speedup resultsewt given in this paper, only the

increase in the amount of ILP.)

Although stride value prediction produces a higpegdiction accuracy and a larger

amount of ILP, as compared to last value predictiba two predictors are fundamentally
the same. Consequently, for more complex outplueveatterns such as 1, 4, 7, 9, 1, 4,
7,9, ...,1,4,7,9, etc., both value predictoagehvery poor performance. To address
this shortcoming, Sazeides and Smith [SazeidesB8)josed the finite-context method

(FCM) predictor. This two-level predictor stordgtlast n output values into the first

level of the predictor while the hardware in thes® level to chooses between those
values. Consequently, this predictor is able tptw& and accurately predict more

complex, but regular patterns.

Their results showed that the prediction accuracthe last value predictor is 23% to
61%, with an average of 40%, while the predictioougacy of the stride value predictor
is 38% to 80%, with an average of 56% for selecBRECint95 benchmarks. By
comparison, the prediction accuracy of the FCM joted is 56% to 90%, with an
average of 78%. Since higher prediction accuracesslate into higher performance,
combining two predictors together, such as thelestand FCM value predictors, should
yield even higher prediction accuracy, and subsatfyeperformance. These hybrid
value predictors are the subject of the next sahese

7.2.2.2. Complex (Hybrid) Value Predictors

For their hybrid value predictor, Rychlét al [Rychlik98] combined an enhanced stride

value predictor together with a FCM value predictorhey enhanced the base stride
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value predictor by adding second stride field. Tir& stride field stores the difference
between the last two output values while the secsinde field stores the last stable
stride and is used in conjunction with the lastpotitvalue to generate the predicted
value. The first stride field only updates theb&astride field if the last two stride values
are the same. For each instruction, both predicteake a prediction. The prediction
from the predictor with the higher confidence cauntalue is chosen as the predicted
value. In the case of a tie, the default choidbesFCM predictor.

For the SPEC 95 benchmarks, this hybrid value ptedachieved prediction accuracies
of 74% to 83% and speedups of 9% to 23%, for ast&amachine. Although these
prediction accuracies are not as high as thosengivgdSazeides97], this hybrid value
predictor reduces the total number of predictiopobly allowing “useful” instructions
into the value prediction table. A useful instrontis one which produces a value for a
dependent instruction when both instructions at@eninstruction window. Furthermore,
these speedup results were enhanced by using @igelee-issue core, which only re-
issues dependent instructions (instead of alluesns after the dependent one).

The hybrid value predictor proposed by Wang anchidia [Wang97] is very similar to
the predictor in [Rychlik98]. In this paper, theegiction from the FCM predictor is
chosen if its confidence counter is higher thangtreziction threshold. If not, then the
prediction from the stride predictor is chosenpafsts confidence counter is higher than
the prediction threshold. If not, then no prediotis made. The prediction accuracy and

speedup results for this hybrid value predictosiaslar to those shown by [Rychlik98].

7.3. Simplification and Elimination of Trivial Computations

The only previous work that focused directly onvied computation is found in
[Richardson92]. In this paper, Richardson restddhe definition of trivial computations
to the following eight types: multiplications by D, and —1; certain divisions (X + Y with
X ={0, Y, -Y}), and square roots of 0 and 1. Tap®it these trivial computations,

117



Richardson proposed hardware that would eliminagéecomputations simply by setting
the output value to the appropriate value (0, 1prEX). The latency of this bypass was

assumed to be one cycle.

For the benchmarks from the SPECfp92 and Perfadd 6&énchmark suites, his results
showed that 0% to 7.3% of the instructions wengairin these benchmarks. His results
showed that by eliminating these trivial computasio his proposed solution could
improve the processor’s performance by 2.1% forSREC benchmarks and 4.4% for
the Perfect Club benchmarks.

The three key differences between this work and thssertation are the types of
benchmarks that were used, the scope of the definif trivial computations, and how
the trivial computations were exploited. The fiddference is that Richardson restricted
the definition of trivial computations to the abaight types while 26 types were defined
in Chapter 3. The second difference is that Ra$@m studied only floating-point
benchmarks (SPEC 92 and Perfect Club) while theltsegiven in Chapter 6 are for a
mix of integer, floating-point, and multimedia bé&éntarks from the SPEC 2000 and
MediaBench benchmark suites. The third differeisdbat Richardson did not appear to
use a simulator to determine the performance oprogposed solution. As a result, his
speedup results do not account for pipeline effectistead of simplifyingand
eliminating the trivial computations, Richardsonlyorliminated them because his
definition of trivial computations did not includ&e simplifiable ones. Furthermore,
even for the trivial computations that could beedily eliminated, he did not take
advantage of the early non-speculative scheduling.

Since Richardson did not increase the scope aakroomputations, the effects of the
first and third differences result in a lower perege of speedup. On the other hand,
using only floating-point benchmarks and not inahgdthe effect of the processor’s
pipeline has the effect of somewhat over-inflatihg speedup results. Despite this, for
similar processor configurations, the average spgeed 2% that he reported was much

lower than the 8.86% given in Chapter 6.
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Finally, Richardson asserted that the lack of mpnesiwork on trivial computation was
not due to its novelty, but due to a lack of knalgle as to how often trivial computations

would occur.

Brooks and Martonosi [Brooks99] proposed two meghofireducing the operation’s bit
width to improve the processor’s performance oregse its power consumption. They
noticed that for the SPEC and MediaBench benchmamkse than 70% of all 64-bit
arithmetic operations required 32-bits or less. derrease the processor's power
consumption, 64-bit operations were converted BRebit operations. To improve the
processor’'s performance, the functional units weredified to allow two 32-bit

operations to execute simultaneously.

Their results showed that by reducing the bit-widttthe operation from 64 to 32 bits,
the power consumption of the integer arithmetidudiecreased by over 50%. On the
other hand, executing two narrow-width operationstiee same functional unit yields
speedups of 4.3% to 6.2% for the SPEC 95 benchnamks8.0% to 10.4% for the
MediaBench benchmarks.

7.4. Prior Work in Simulation Methodology

The related work in this section is divided int@ tiollowing four categories: simulator
validation, reducing the simulation time, benchmarid input set characterization, and

processor parameter analysis.

7.4.1. Simulator Validation
The authors of several papers described their epms when trying to validate the

performance of a simulator against a reference mactr instruction set architecture

(ISA). Black and Shen [Black98] iteratively impex\the accuracy of their performance
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model by comparing the cycle count of their simoiatwhich targeted a specific
architecture (in this case the Power PC 604), agdime cycle count of the actual
hardware. Their results show that modeling, spatibn, and abstraction errors were
still present in their simulation model, even aféelong period of debugging. In fact,
some of these errors could be revealed only aftemparing the performance model to
the actual processor. As a result, their work sftbwhe need for extensive, iterative

validation before the results from a performancel@hcan be trusted.

Desikanet al [Desikan01] measured the amount of error, as cosdp&o the Alpha
21264 processor, that was present in an Alphaorersf the SimpleScalar simulator.
They defined the amount of error to be the diffeeem the simulated execution time and
the execution time of the processor itself. Thesults showed that the simulators that
model a generic machine (such as SimpleScalar) rggneeport higher IPCs than
simulators that are validated against a real machin other words, a simulator that does
not target a specific architecture will generaligport higher IPCs for the same
benchmarks as compared to a validated simulatotdhgets a specific architecture. This
result is not particularly surprising since itiisely that unvalidated, generic-architecture
simulators will tend to underestimate the compiexitf the implementing certain
microarchitectural features that affect the cloekigd. On the other hand, unvalidated

simulators that targeted a specific machine usualtierestimatedthe performance.

Gibsonet al [Gibson00] described the types of errors that weesent in the FLASH
simulator when compared to the custom-built FLASHiltrprocessor system. To
determine which errors were present in the FLASHKhugtor, they compared the
simulated execution time from the FLASH simulatgaiast the actual execution time of
the FLASH processor. In addition, they tested w#Eveifferent versions of their
simulator to evaluate the accuracy versus simulafeed tradeoff of using a faster, but
less complex simulator instead of a slower, butemmymplex simulator. Their results
showed that most simulators can accurately pretetarchitectural trends if all of the
important components have been accurately modelwy also showed that a faster,

less complex simulator that uses a scaling facotHe results often did a better job of
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predicting a processor’s performance than a slowere complex simulator. Finally,
their results showed that the margin of error ftkecentage difference in the execution
time) of some simulators was more than 30%, whschigher than the speedups that are
often reported for specific architectural enhanaasie

Collectively, [Desikan01, Gibson00] show that tlesults from unvalidated simulators

cannot be fully trusted and that any conclusiomsvdrfrom those results are suspect.

Glamm and Lilja [GlammOO] verified the functionabrcectness of a simulated ISA by
simultaneously executing the instructions from agpam on a simulator and on the
targeted machine. Then, after each instructior, dimulated processor’'s state was
compared to the real machine’s processor statey difference between the states
identified an error in the simulated ISA, which ¢aen be fixed.

Cainet al [Cain02] measured the effect of the operatingesysand the effects of input

and output (I/0O) on simulator accuracy. To acceshpthis task, they integrated the
SimOS-PPC, an operating system that targets theef®@varchitecture, with SImMP, a
multiprocessor simulator. Their results showed tihe lack of an operating system could
introduce errors as high as 100%. Furthermorer thsults showed the potential for
error due to 1/O if the additional memory traffis not properly taken into account.
Overall, their results showed the need to integaateperating system into the simulator

for increased simulator accuracy and precision.

7.4.2. Reducing the Simulation Time

As described in Section 1.9, simulators are the tmoportant tool in computer
architecture research. The most accurate andletetsimulators are execution-driven,
cycle-accurate simulators, such as SimpleScalarhileWthis type of simulator fully
models all major processor components, they trdfdeareased accuracy and detail for
slower simulation speed. The slow simulation spesd be further exacerbated by the

length of the benchmark and input set. For exajmgMecuting theammpbenchmark
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from the SPEC 2000 benchmark suite with the refsranput set requires simulating
approximately twotrillion instructions. Therefore, the simulation time dfist
benchmark with the reference input set on a MIP80RQ processor (which simulates
this benchmark at 75,000 instructions per secoadyuires more than 308ayd As a
result, since it is virtually impossible to explareen a small fraction of the design space
with these long simulation times, the following pephave proposed different solutions

to reduce the simulation time.

The most obvious solution to reduce the simulatio® is to modify the input set so that
that benchmark executes fewer instructions. Howehe stipulation is that a benchmark
that uses the modified input set must have the sdvamcteristics as when it is not using
the modified input set. Failure to uphold thapskition defeats the purpose of using
benchmarks that are similar to “real-world” proggeam

KleinOsowski and Lilja [KleinOsowskiO2] producedetiMinneSPEC reduced input set
for the SPEC CPU 2000 benchmarks. Benchmarksug@tMinneSPEC reduced input
sets ostensibly have reference-like characterigicaction-level execution patterns,
instruction mixes, and memory behaviors), albeithvda much shorter simulator time.
The input sets were reduced by modifying the contdare parameters, truncating the
input set, or creating a completely new input sebr each benchmarks, they tried to
create three reduced input sedsiall, medium, andlarge that produced approximately
100 million, 500 million, and one billion, respely, dynamic instructions.

To measure the fidelity of the MinneSPEC reduceuliinas compared to the reference
input set, they used two metrics. The first metised the chi-squared test to measure the
“goodness-of-fit” between the instruction mixes MinneSPEC reduced and the
reference input sets. The second metric did theesby comparing the function-level
execution profiles for each input set. (A functiemel profile is the set of times that is
spent executing each function.) Their results sltbwhat half of the benchmarks had
statistically similar function-level execution piles for both the MinneSPEC and
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reduced input sets. A slightly higher percentaigeemchmarks had a statistically similar

instruction mix profiles for both input sets.

While the MinneSPEC reduced and reference inpd ae¢ similar in some respects,
KleinOsowski and Lilja showed that, for some benahks, the memory performance (as
exemplified by the cache miss rate) can be quiterdnt.

Another way of reducing the simulation time is &rfprm detailed (slow) simulations on
some parts of the program while performing funaioffast) simulations on the other
parts of the program. One problem with this apginoa that the processor state coming
out of the functional simulation reflects processtate that was present when going into

the functional simulation.

To address this problem, Haskins and Skadron [iHa8ki proposed Minimal Subset
Evaluation as a way to decrease the simulation tifritee program’s warm-up phase by
probabilistically determining a minimal set of tsactions that are necessary for a
sufficiently accurate cache state. More specificadhey used a “crude heuristic” to
determine the number of memory accesses that neeccur before the end of the fast-
forwarding to achieve a cache state that is siElst similar to the cache state without
fast-forwarding. They used separate formulas ter direct-mapped and set-associative
caches to reduce the computation time.

Their results showed that this approach, for a%9xobability of achieving an accurate
processor state, decreased the simulation timenbgvarage of 47% with only a 0.3%
error in the IPC. For a 95% probability, their eggch decreased the simulation time by
an average of 60% while incurring a 0.4% error.

Finally, the third way of reducing the simulatioimé is to determine a group of
representative program intervals that could betgubsd for the entire program. Using
this way, the computer architect can simulate dimbse samples in lieu of executing the

entire benchmark. Alternatively, the architect panform detailed simulations on those
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samples while fast-forwarding between them. Udihig approach can dramatically
reduce the execution time while, if properly dom&imizing the error.

One implementation of this way is given in [Sher@08]. In this paper, Sherwoad al
used profiling to determine a group of represevgaprogram samples that could be
substituted for the entire program. To characteeiach program sample, they used the
basic block execution frequency. Associated wabheprogram sample is a basic block
vector that contains the execution frequenciesaohdasic block in that program sample.
Then, to determine the similarity of program sarspléhey calculated the Euclidean
distances between vectors. Two program samplesimikar if there is small Euclidean
distance between them. After calculating the Eaen distances, they chose the most
dissimilar program samples as the representativef ggogram samples.

Their results showed that this method could deerdas simulation time of the reference
input set by over a hundred or even a thousandstinith only a 17% IPC error when
using a single program sample and a 3% IPC errenwising multiple program samples.
By comparison, blindly fast-forwarding has an 80%Cl error without a comparable

reduction in the simulation time.

7.4.3. Benchmark and Input Set Characterization

In most cases, simulating all of the benchmarksiapdt sets in a benchmark suite is not
a tractable problem. To reduce the simulation ticeenputer architects usually simulate
only a sub-set of the benchmarks in a benchmatk.suiowever, if the benchmarks in

this sub-set are too similar with respect to edtierp then the simulation results may be
skewed. To address this problem, the following tpapers propose solutions that

classify benchmarks and determine a minimal seeathmarks to run.
Eeckhoutet al [Eeckhout02] used statistical data analysis tephes to determine the

statistical similarity of benchmark and input seirp. To quantify the similarity, they

used metrics such as the instruction mix, the Wrgsrediction accuracy, the data and
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instruction cache miss rates, the number of instms in a basic block, and the
maximum amount of parallelism inherent to the bematk. After characterizing each
benchmark with the aforementioned metrics, theyd usitistical approaches such as
principal component analysis and cluster analysiactually cluster the benchmarks and

input set pairs together.

The key difference between their method of groupbepnchmarks and the method
presented in Chapter 4 is that their method isipated on defining a set of metrics that
encompass all of the key factors that affect thdop@ance. The deficiency of their

approach is that it assumes that all significantricge have been incorporated into the
statistical design without the benefit of simulaso However, since it is possible for two
unrelated processor parameters to interact, pickiatyics to identify the effect of either

parameter does not necessarily cover the effettienf interaction. The approach given
in this dissertation, on the other hand, does nekemthat assumption; instead, all
parameters are weighted equally. Finally, theithme requires a redefinition of the

metrics if it were be used to classify benchmarlseld on other metrics, such as the

power consumption, while this method does not recamy redefinition.

Taking a different approach to the same problerfadband Ahituv [Giladi95] identified
the “redundant” benchmarks in the SPEC 92 benchstk. They defined a redundant
benchmark to be one that can be removed from thehipeark suite without significantly
affecting the resulting SPEC number. In theorye BPEC number measures the
performance of a computer system across a wideerahgrograms. The SPEC number
is generated by normalizing each benchmark’s exatuime to a baseline system and

then computing the geometric mean of the results.
Their results show that 13 of the 20 benchmarkkenSPEC 92 suite were redundant. In

other words, the conclusion of their approach @& tinly seven benchmarks need to be

simulated and that those seven adequately reprakeox
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This method of determining redundant benchmarkggsificantly different from the one
proposed in Chapter 4 for at least two reasonsst Bi all, this method is completely
based on approximating the SPEC number. Secosilige the SPEC number is
calculated by using the benchmark’s execution tamd by normalizing the execution
times to a baseline system, there is no directextion to the effect that each benchmark
has on the processor. However, the method irdiesertation focuses exclusively on the

benchmark’s effect on the processor.

7.4.4. Processor Parameter Analysis

One problem in computer architecture that is naty uenderstood is the effect that
different processor components have on the procesperformance. While it is
relatively simple to understand the effect thatdlze or number of a component has on
the performance, what complicates this problerhas the processor components interact
in complex ways. Since these components and th&ractions could significantly
affect the processor’s performance, it is importemtunderstand their effect. The
remainder of this section describes the relateck woat analyzes the effect of various

processor components.

Skadronet al [Skadron99] performed an in-depth study of theldraffs between the
instruction-window size (i.e. number of ROB entyjelsranch prediction accuracy, and
the sizes of the L1 caches. Their paper performedt of detailed sensitivity analyses
that examined the IPC for different instruction-danv sizes, data and instruction cache
sizes, and different branch prediction accurac&saguthe integer benchmarks of the
SPEC 95 benchmark suite.

When evaluating the effect of a pair of parametiresy fixed two of the four parameters
while varying the other two. For example, to detiee the effect that L1 D-Cache and
L1 I-Cache sizes has on the performance (IPC), fikegl the branch prediction accuracy
to be 100% while using a 128-entry instruction veiwd
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While their results were very detailed and had sdvmeaningful conclusions, these
results and conclusions cannot be taken complatéde value for a couple of reasons.
First of all, before they performed their sensitivanalyses, they did not determine the
important parameters and interactions. As a resoithe of the important parameters and
interactions may have a disproportionate and unkneffect on the results. Second, the
values of the fixed parameters also can have dfisgmt impact on the results. The
values for fixed parameters can also have a laugknown effect by establishing a
baseline result that is unrealistically high or low

In summary, the related work described in this isacthas focused on simulation
validation, reducing the simulation time, benchmarid input set characterization, and
processor parameter analysis. The goal of thetfiree topics is to improve the accuracy
of the simulation results while the goal of the ributopic is to gain a deeper
understanding of how the various processor compsrefect its performance. While
these two goals are somewhat similar to the benefit using statistically rigorous
simulation methodology, the key difference betweeonr work and this dissertation is
that the primary focus of this dissertation is ioyng simulation methodology. As a
result, this dissertation covers its steps of iheukation methodology in more depth and

also by basing its recommendations on a statidocaidation.
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Chapter 8

Future Work

This chapter describes some future work relatedngiruction Precomputation, to

exploiting trivial computations, and, especially,improving simulation methodology.

8.1. Instruction Precomputation

One potential problem with the current implemeptatof Instruction Precomputation is
that the lifetime of the unique computations thatia the Precomputation Table could be
very short. For example, the unique computatio® Gmay be heavily used for
initialization purposes at the beginning of thegreon, and used relatively infrequently
afterwards. Therefore, although this particulaiqua computation has a very high
frequency of execution overall, its frequency okeexion is much lower after the
program’s initialization section. More generabynce a unique computation’s frequency
of execution may be very high in some parts ofgtegram and very low in others, the
Precomputation Table could be redesigned to allvRrecomputation Table to replace
unique computations that may have a low frequeriggxecution in the near future with
high frequency ones. However, instead of dynaryicakplacing one unique
computation at a time, to reduce the access tintead’recomputation Table (which is
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affected by the number of ports), the entire tadoeld be updated at a single time. Of
course, while the table is being updated, its estdannot be accessed. Accordingly,
since the compiler — through feedback-directed noigtition — would determine what
unique computations should be placed in the Preotatipn Table at what time, the
Precomputation Table would then be similar to &&mfe managed cache.

In this case, the Precomputation Table would netirie be as large as when the table is
not updated since the table needs only to holditigue computations that could be used
in the near future. Furthermore, instead of ohlha beginning of the program, updating

the Precomputation Table periodically may alsodyledtter speedups when compared to

using a single, monolithic Precomputation table.

Another possibility to improve the performance dinel efficiency — as measured by table
area — of Instruction Precomputation is to comhingith the hardware for Trivial
Computation Simplification and Elimination. Thevadtage of combining these two
approaches is that Instruction Precomputation cae the Trivial Computation
Simplification and Elimination hardware to “filtetinique computations that are trivial
out of the Precomputation Table. As a result, Bhecomputation Table will be filled
only with unique computations that are not triviadConsequently, the combination of
these two approaches will target a larger numbarmique computations (for the same
table size) or will target the same number of uaigamputations (for a smaller table).

8.2. Simplification and Elimination of Trivial Computations

Although the results in Chapter 6 showed that hardwcan be used to reduce the
execution time of the program by Simplifying andnithating Trivial Computations, a
potentially more cost-effective solution is to ube compiler to statically simplify or
eliminate any trivial computations. However, thécacy of this alternative approach
depends on the cause of trivial computations. therowords, why do typical programs

have such a large percentage of trivial computation
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If trivial computations are strictly correlated #ospecific input set, then it is probably
more effective to use hardware to simplify and elate the trivial computations since
the compiler may not be able to simplify or elintméhat trivial computation for all input
sets. On the other hand, if the trivial computadicare primarily a function of the
program, then the compiler may be able to simgifieliminate a large number of trivial
computations since the trivial computations arep®hdent of the input set. However, to
determine which situation predominates, the caaegy a program executes so many

trivial computations need to be identified.

8.3. Improving Computer Architecture Simulation and Design

Methodology

Chapter 4 described the six major steps of the lation process and the improvements
to Steps 3, 4, and 6 (processor parameter valextgel, benchmark selection, and
enhancement analysis) of the simulation procespgsex by this dissertation. Section
8.3.1 describes two potential improvements thatdcba applied to Steps 3 and 5 of the
simulation process while Section 8.3.2 describ@g®tantial improvement for processor

design methodology.

8.3.1. Simulation Methodology

In step 3 of the simulation process, the computgriect chooses values for the different
user-configurable processor parameters. Chapudgsdribed a procedure for using a
Plackett and Burman design to aid the architectchonosing an appropriate set of
processor parameter values. However, when chogsmgessor parameters values, the
architect needs to realize that using differentuinpets could result in very different

program characteristics.
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For example, one of the most important programadtaristics is the miss rate of the L1
D-Cache. However, for several benchmarks in thEGR000 benchmark suite, the L1
D-Cache miss rate when using the reference infgus statistically different that the L1
D-Cache miss rate when using the MinneSPEC lardacesl, test, or train input sets
[Yi02-2]. Therefore, if the architect incorrecigsumes that the L1 D-Cache miss rate of
the test input set is fairly similar to the L1 D&ba miss rate of the reference input set,
then the memory performance of the processor ppear to be much better when using
the test input set since the memory parameters wete adjusted appropriately.
Therefore, although the architect may use the Btaeid Burman design to help choose
processor parameter values, that careful efforkddo@ negated by basing those values on
an incorrect premise, namely, that the reducedrefetence cache miss rates are the

same.

One way of salvaging the utility of the reducedungets — which are attractive since
they have shorter-than-reference simulation times o0 reduce the cache size and
associativity when using reduced input sets. Tiadlpm with this approach is that, to

normalize the cache miss rates of the reduced efledence input sets, each benchmark
may require a different cache size and assocmtivitherefore, one benchmark may need
to use an 8 KB, 1-way cache while another benchmak need to use a 64 KB, 4-way

cache.

While this non-uniformity of cache sizes and assinity across benchmarks minimizes
the differences in the cache miss rates when uiegreduced input set — which
decreases the amount of error in the simulationlses- this non-uniformity makes it
very difficult for the architect to evaluate therfjeemance of any memory-based
enhancement since the efficacy of the enhancemawntdepend on the actual cache size

or associativity.
An additional problem when scaling the cache sizé associativity to minimize the

difference in the cache miss rates is that theng lmeamultiple cache configurations that

appear to have approximately the same effect. Mexyesince some of the cache
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configurations make seem a little “extreme” (i.eing a 1 KB, 1-way cache for a reduced
input set instead of a 128 KB, 8-way cache forrdference input set) the architect may
opt to use less “extreme” cache configurationse Kéy question when deciding whether
to use cache configuration A or cache configuraoims: What is the error for each

configuration? The cache configuration that miziesi the differences in the cache miss
rates of the reduced and reference input sets anay &bout the same amount of error as

the cache configuration that is second best.

Therefore, as an item of future work that aimsntpriove the simulation methodology of
Step 3, the first step is to quantify the amounewdbr in IPC that exists when reduced
caches are not used with reduced input sets. Thersecond step is to determine a set of

cache configurations that minimize the error.

In step 5 of the simulation process, the computehi@ct actually performs the

simulations. There are at least four main wayseuce the simulation time of the
benchmarks, when it uses the reference input Best, the architect could use reduced
input sets like those from the MinneSPEC benchmsaite. Second, the architect could
opt to fast-forward (functional simulation only)rtugh the initialization section of the

program and then resume normal simulation (fulkignand modeling). Third, the

architect could modify the simulator to periodigafhst-forward through parts of the

program while performing full-simulation on the gales in-between. Fourth, the
architect could simulate a fixed-number of instiwts and then terminate the simulation
at that point.

Ostensibly, these approaches reduce the total ationl time while preserving the
characteristics of the reference input sets. Hewehe fidelity of these approaches has
not been comprehensively and comparatively estaddis In addition to the possibility
that some of these approaches may incur a loweumtnad error than the others, some of
these approaches also may be more appropriate ekimg the effect of certain
enhancements. For example, fast-forwarding throtlgh initialization section of

computationally-intensive benchmarks may underasgnt the effect of trivial
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computation elimination since compilers often us@ @ clear the value of a register or a
memory location. Also, since the initializationceen may account for a significant
percentage of the program’s total execution timast-forwarding through the

initialization may inflate an enhancement’s speedup

Therefore, to determine which approach is bestpfmwer reduction and performance
evaluation, each of these approaches will be ctexiaed to determine which approach
is most similar to the reference input set, whipbraach has the least amount of error,
and which approach is most suitable for evaluatimg efficacy of different types of

enhancements.

8.3.2. Design Methodology

One problem with processor design methodology a$ tiew processors running future
programs are designed using old processors rurdabgd programs. So, how does a
computer architect design and evaluate the periocenaf a future processor using the
tools of the past (short of inventing a time maelith Of course, the fundamental issue of
this problem is summarized by the following questioVhat is the difference in
performance (and power consumption) for the exple(te. simulated) and actual future
processors? To address this issue, the differentlee expected performance of the
future processor running past and future benchmuiks past and future compiler
options will be quantified.
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Chapter 9

Conclusion

The performance of superscalar processors is linbfethe amount of instruction-level
parallelism (ILP), which in turn is limited by cont and data dependences between
instructions. This dissertation describes two oacchitectural techniques, Instruction
Precomputation and the Simplification and Elimiaatof Trivial Computations, which
increases the amount of ILP.

Instruction Precomputation improves the performan€ea processor by dynamically
eliminating instructions that are redundant comgatg. A redundant computation is
one that the processor previously executed. losbiuPrecomputation uses the compiler
to determine the highest frequency unique compmutafi which are loaded into the
Precomputation Table before the program begins utikec For redundant
computations, instead of re-computing its resthi, dutput value is forwarded from the
matching entry in the Precomputation Table to tfgruction and then the instruction is
removed from the pipeline.

The results in this dissertation show that a smathber of unique computations account
for a disproportionate number of dynamic instruasio More specifically, less than 0.2%
of the total unique computations account for 14.68%14.49% of the total dynamic

instructions. When using the highest frequencyjugicomputations from Input Set B
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while running Input Set A (Profile B, Run A), a B4éntry Precomputation Table

improves the performance of a base 4-way issuerstgdar processor by an average of
10.53%. This speedup is very close to the uppat-peedup of 10.87%. This speedup
is higher than the average speedup of 7.43% thle vieeuse yields for the same
processor configuration and the same benchmarksatwe reuse requires slightly more
hardware. More importantly, for smaller table siz€16-entry), Instruction

Precomputation outperforms value reuse, 4.47%88%. Finally, the results show that
the speedup due to Instruction Precomputationdsagpproximately same regardless of
which input set is used for profiling and regardles how the unique computations are

selected (frequency or frequency/latency product).

Overall, there are two key differences betweenriliesion Precomputation and value
reuse. First of all, Instruction Precomputatiorsuthe compiler to profile the program to
determine the highest frequency unique computatidriie value reuse does its profiling

at run-time. Since the compiler has more timedtenine the highest frequency unique
computations, the net result is that Instructioec®mputation yields a much higher
speedup than value reuse does for a comparablerarmdwhip area. Second of all,

although using the compiler to manage the PT ehteis the need for additional

hardware to dynamically update the PT, it can dt@aly increase the compile time

since the compiler must profile the program.

Trivial computations are computations where thegouvalue is zero, one, equal to one
of the input values, or a shifted version of ondl&f input values. Examples of trivial
computations include: 0+X, X*0, and X/X. The rdsuh this dissertation show that, for
12 selected SPEC 2000 benchmarks, 12.24% of alhrdin instructions are trivial

computations. For the five selected benchmarks ftee MediaBench benchmark suite,

trivial computations account for 5.73% of all dynianmstructions.
This dissertation has demonstrates that since rafis@nt percentage of a program’s

instructions are trivial computations, simplifyiog eliminating these trivial computations

can improve the processor’s performance. A pracesisnplifies a trivial computation
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by converting it to a less complex (i.e. lower taty) instruction type with different
operands, but that will still produce the correzsuit. On the other hand, a processor
eliminates a trivial computation simply by removiting instruction from the pipeline and
selecting the correct output value (0, 1, Oxffffftfr the value of the other input operand).

The results in this dissertation show that dynalyicamplifying and eliminating trivial
computations improves the performance of a basaylissue superscalar processor by
an average of 8.86% for 12 SPEC 2000 benchmark$wdd0o0% for five MediaBench
benchmarks.  Additionally, simplifying and elimimag trivial computations also
improves the performance of a processor that dadshave any functional unit
constraints (i.e. where the number of each typ&un€tional unit is equal to the issue
width of the processor) by an average of 6.60% (SP&00) and 2.92% (MediaBench).

Overall, Simplifying and Eliminating Trivial Compaitions yields fairly impressive
speedups at a relatively low hardware cost. Thip@sed enhancement is particularly
novel because it improves the processor's perfocsanwith early non-speculative
instruction execution. This allows the processorekceed the dataflow limit without
requiring verification of a prediction and mispreiehn recovery.

While these new techniques can improve the perfocmathe primary focus of this
dissertation is on improving the quality of simidat methodology. More specifically,
this dissertation describes how a statistical Rfticknd Burman design can be used to
improve the way user-configurable processor parametlues are chosen, benchmarks
are chosen, and finally processor enhancementanadgzed. When choosing processor
parameter values, a computer architect can usackd® and Burman design to identify
the key processor parameters that have a dispiopat¢ effect on the processor’s
performance. ldentifying the key processor paramets an extremely difficult task
since unknown interactions can severely skew thali®e Since a Plackett and Burman
design is able to quantify the effect of the maghificant interactions, the architect can
confidently use that design to help determine tlestnsignificant parameters. After

identifying the key parameters, the architect careftlly choose values for those
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parameters and then choose values for the remapangmeters. The values for the
remaining parameters do not need to be chosenasittmuch care since they have less

effect on the results than do the key parameters.

The results in Section 6.3.1 demonstrated thataakBtt and Burman design could
efficiently identify the most significant processparameters. In this case, the most
significant processor parametersim-outorderof the SimpleScalar tool set for the 12 C
benchmarks of the SPEC 2000 benchmark suite were th

1) Number of Reorder Buffer Entries

2) L2 Cache Latency

3) Branch Predictor (i.e. the Branch Prediction #ecy)
4) Number of Integer ALUs

5) L1 D-Cache Latency

6) L1 I-Cache Size

7) L2 Cache Size

8) L1 I-Cache Block Size

9) Memory Latency of the First Block

10) Number of LSQ Entries

After realizing that these parameters have the ekstt on the processor’s performance,
choosing their values and the values of the othergssor parameters is fairly simply.

Since the results of a Plackett and Burman designvector of ranks, those results can
also be used to aid the architect in choosing afde¢nchmarks that are either distinct or
similar — depending on what is appropriate to esaihe performance of the architect’s
enhancement. If all of the parameters’ ranks Viay benchmarks are similar, then those
two benchmarks have a similar effect on the prameséfter calculating the Euclidean
distance between vectors, which represents the rinoddlissimilarity between those two
benchmarks, the results can be displayed using@rogram.

If the architect wishes to select N benchmarks,atwhitect moves a horizontal line up

from a dissimilarity of zero. When the horizontiale intersects N vertical lines, the
benchmarks have been categorized into N groupsen,Tto select the final set of
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benchmarks, the architect needs only to selectbenehmark from each group. In the
example in Section 6.3.2zip vpr-Place vpr-Route gcg art, mcf, equake andammp

form the final set of benchmarks.

The final application of a Plackett and Burman gleghat is proposed in this dissertation
is to use it to analyze the effect of a processdrarcement. For each parameter, by
comparing its average sum-of-ranks in the baseessmr against its average sum-of-
ranks in the processor with the enhancement, itlatact can see how the enhancement
affects the processor. For example, adding Instnud®recomputation to the processor
will primarily improve that processor’'s performand® decreasing the amount of
functional unit contention. (Instruction Precongdidn also improves the processor’s
performance by decreasing the execution latenagddindant computations.) In other
words, Instruction Precomputation addresses thdonmesince bottleneck of busy

functional units.

Adding hardware to Simplify and Eliminate Triviab@putations does not significantly

relieve or exacerbate any performance bottleneBaher, the order of and the sums-of-
ranks for the top ten most significant parameteeseasentially the same. Therefore, it is
concluded that this processor enhancement moressruniformly affects all processor

parameters (i.e. it does not markedly mitigatereate any bottlenecks).

Overall, one of the key contributions of this disaBon is that it advocates the use of
statistically-based simulation methodology. Sinaechitects usually approach the
simulation process in an ad-hoc manner and sinqaino work has explicitly focused on
improving simulation methodology, using Plackettd aBurman designs represents a
fundamental improvement in simulation methodologyn particular, Plackett and
Burman designs are effective in helping the compuwechitect choose processor
parameter values and benchmarks, and analyze tbet ef processor enhancements.
The cost of this approach is that it requires adeiva simulations.
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In conclusion, this dissertation shows the follogvilour key results. First, the results
show that significant amounts of redundant andiaricomputations exist in typical
programs. Second, the Instruction Precomputapgncaach of statically determining the
highest frequency unique computations yields higéeeedups than the value reuse
approach of dynamically determining the redundamhmutations. Third, Simplifying
and Eliminating Trivial Computations can also sig@aintly improve a processor’'s
performance. Finally, a Plackett and Burman desim be used to improve simulation
methodology by helping the architect choose prawegarameters and benchmarks, and
analyze the effect of a processor enhancement.
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Appendix A — Supplemental Results

This Appendix shows the figures and/or tables foee sets of results: 1) The profiling
results for the amount of redundant and trivial patations when using a second input
set; 2) The speedup results due to Instruction dPnpatation for all possible

combinations of input sets, frequency, and theueegy and latency product; and 3) The
speedup results due to Simplifying and Eliminatimg/ial Computations when using a

second input set. With the exception of some efltistruction Precomputation speedup
results, each of these figures and tables in tipiseAdix has a corresponding figure or
table in Chapters 2, 3, or 6. Specifically, witie texceptions of Figures A6.1.4.2 to
A6.1.4.5, the name of each figure or table is basedhe name of its corresponding
figure or table, respectively. For example, Fig@t@.1 shows the amount of trivial

computation present in select SPEC 2000 and sklediaBench benchmarks with one

input set; the corresponding figure, when usinglwinput set, is Figure A3.2.1.
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Al Amount of Global-Level Redundant Computation

100% -

20% A

g 80% - m <1079
O O <1078
E, m <1077
2 60% A m <1076
-% m <1075
5 0O <10™
g 40% - 0 <1073
(é m <1072
% @ <107

0% -

Benchmark

Figure A2.2.1.1: Frequency Distribution of Unique Computations per
Benchmark, Global-Level, Normalized, Input Set B
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Figure A2.2.1.2: Percentage of Dynamic Instructions Due to the Unique

Computations in each Frequency Range, Global-Level, Normalized, Input

Set B
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Table A2.2.1.1: Characteristics of the Unique Computations for the Top
2048 Global-Level Unique Computations, Input Set B

Benchmark | % of Unigue Computations| % of Total Instructions
gzp 0.020 13.94
vpr-Place 0.258 41.85
vpr-Route 0.804 28.61
gcc 0.011 25.45
mesa 0.009 38.35
art 0.012 16.44
mcf 0.005 17.39
equake 0.004 28.71
ammp 0.168 29.78
parser 0.028 26.51
vortex 0.014 24.64
bzip2 0.002 30.64
twol f 0.007 22.04
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A2 Amount of Local-Level Redundant Computation
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Figure A2.2.2.1: Frequency Distribution of Unique Computations per
Benchmark, Local-Level, Normalized, Input Set

(*) Results forequakenot presented due to a problem with the Origin038@tem
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Figure A2.2.2.2: Percentage of Dynamic Instructions Due to the Unique
Computations in each Frequency Range, Local-Level, Normalized, Input Set
B

(*) Results forequakenot presented due to a problem with the Origin038gstem
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A3 Comparison of the Amount of Global and Local Level Redundat

Computation

Table A2.2.2.1: Percentage of Instructions Due to the 2048 Highest
Frequency Unique Computations at the Global and Local Levels, Input Set

B

Benchmark | Global | Local | Global - Local
gzp 13.94 | 11.13 2.81
vpr-Place | 41.85 | 35.24 6.61
vpr-Route | 28.61 | 19.90 8.72
gce 25.45 | 12.96 12.49
mesa 38.35 | 37.40 0.95
art 16.44 | 15.93 0.51
mcf 17.39 | 15.05 2.34
equake 28.71 | 0.00 28.71
ammp 29.78 | 24.21 5.57
par ser 26.51 | 24.94 1.57
vortex 24.64 | 20.01 4.63
bzip2 30.64 | 25.60 5.04
twolf 22.04 | 16.51 5.53

150



A4 Amount of Trivial Computation
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Figure A3.2.1: Percentage of Trivial Computations per Instruction Type and
per Total Number of Dynamic Instructions for the SPEC and MediaBench

Benchmarks

Table A4.1: Selected MediaBench Benchmarks and Input Sets (Dynamic
Instruction Count in Millions of Instructions), Input Set B

Benchmark Input Set Name | Instr. (M)
adpcm-Decode | S 16 44.adpcn] 8.7
adpcm-Encode S 16 44.pcm 10.5
epic-Compress | test image.pgm 55.4

epic-Uncompress| test.image.pgm.k 10.3
g721-Decode S 16 44.9721 408.4
g721-Encode S 16 _44.pcm 434.1

mpeg2-Decode options.par 1180.8
mpeg2-Encode tek6.m2v 1171.1
pegwit-Decrypt pegwit.dec 15.9
pegwit-Encrypt plaintext.doc 28.7
pegwit-Pub-Key my.sec 12.7
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A5  Speedup Due to Instruction Precomputation
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Figure A6.1.1.1: Speedup Due to Instruction Precomputation; Profile Input

Set B, Run Input Set B, Frequency

(*) Results forart not presented due to a problem with the Netfisjtstem
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Figure A6.1.2.1: Speedup Due to Instruction Precomputation; Profile Input
Set A, Run Input Set B, Frequency
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Figure A6.1.3.1: Speedup Due to Instruction Precomputation; Profile Input
Set AB, Run Input Set B, Frequency

(*) Results forart not presented due to a problem with the Netfigjtgtem
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Figure A6.1.4.1: Speedup Due to Instruction Precomputation for the
Highest Frequency and Latency Product Unique Computations; Profile A,
Run B
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Figure A6.1.4.2: Speedup Due to Instruction Precomputation for the

Highest Frequency and Latency Product Unique Computations; Profile A,

Run A
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Figure A6.1.4.3: Speedup Due to Instruction Precomputation for the
Highest Frequency and Latency Product Unique Computations; Profile B,
Run B

(*) Results forart not presented due to a problem with the Netfigjtgtem
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Figure A6.1.4.4: Speedup Due to Instruction Precomputation for the
Highest Frequency and Latency Product Unique Computations; Profile AB,
Run A
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Figure A6.1.4.5: Speedup Due to Instruction Precomputation for the
Highest Frequency and Latency Product Unique Computations; Profile AB,
Run B

(*) Results forart not presented due to a problem with the Netfigjtgtem
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A6  Speedup Due to Value Reuse
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Figure A6.1.5.1: Speedup Due to Value Reuse; Run B
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A7 Speedup Due to Simplifying and Eliminating Trivial

Computations
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Figure A6.2.1.1: Speedup Due to the Simplification and Elimination of
Trivial Computations for Selected SPEC 2000 Benchmarks, Realistic
Processor Configuration, Input Set B
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Figure A6.2.1.2: Speedup Due to the Simplification and Elimination of
Trivial Computations for Selected MediaBench Benchmarks, Realistic
Processor Configuration, Input Set B
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Figure A6.2.2.1: Speedup Due to the Simplification and Elimination of
Trivial Computations for Selected SPEC 2000 Benchmarks, Enhanced
Processor Configuration, Input Set B
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Figure A6.2.2.2: Speedup Due to the Simplification and Elimination of
Trivial Computations for Selected MediaBench Benchmarks, Enhanced
Processor Configuration, Input Set B
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