
Improving Processor Performance and

Simulation Methodology

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Joshua Jeffrey Yi

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

David J. Lilja, Advisor

December 2003

© Joshua Jeffrey Yi 2003

UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of a doctoral dissertation by

Joshua Jeffrey Yi

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Name of Faculty Adviser(s)

Signature of Faculty Adviser(s)

Date

GRADUATE SCHOOL

Acknowledgements

As the end of my days as a graduate student draws nigh, I have the occasion to reflect

upon the many long days, and the even longer nights, that all too quickly lengthened into

years, that finally culminated with a doctorate in Electrical Engineering, dei gratia. What

this reflection – tinged with nostalgia – has revealed is that the splendor of this

achievement is possible only as a result of the support of others. And while my name

shall be the only one on the diploma, these others deserve similar or equal recognition.

Accordingly, I would like to avail myself of this opportunity to gratefully thank those

people who unfailingly supported and comforted me when I was disheartened, gently

challenged and questioned me when it was necessary, and, finally, loved me always. To

you, I owe a debt that my clumsy eloquence cannot fully articulate and that my feeble

efforts can never adequately remunerate.

I would first wish to acknowledge the infinite debt that I owe to my God and His Son, the

Lord Jesus Christ, the sovereign Lord of my life. I also wish to thank God and Christ

Jesus for His tender compassion and mercy, His everlasting love and goodness, His

unmerited favor and blessings, and His perfect peace and golden happiness. Without any

and all of these gifts, this dissertation would have been impossible.

Praise the Lord, O my soul, and forget not all His benefits – who forgives

all your sins and heals all your diseases, who redeems your life from the

pit and crowns you with love and compassion, who satisfies your desires

with good things so that your youth is renewed like the eagle's.

– Psalm 103:2-5

I also am profoundly indebted to my advisor, Professor David Lilja, for his technical

knowledge, his generous financial assistance through many of my years of graduate

school, his unflagging encouragement, and especially his ample patience (as he had to

listen to my complaints, answer my many questions, and endure my stubbornness). He

also had faith in my abilities when others, often including myself, had doubts. Above

these characteristics, however, the fundamental principles that I learned from him were

professional integrity and gentlemanly deportment. My one professional aspiration is to,

one day, be as fondly regarded by my students as he is by me, and to engender the same

deep respect from my colleagues.

I would also like to recognize the invaluable help that was freely and generously given to

me by Professor Douglas Hawkins, Professor Wei-Chung Hsu, and Professor Pen-Chung

Yew. I would like to thank Professor Hawkins for all the statistical help that he gave to

this statistical neophyte in the form of lengthy e-mail replies and through clear

explanations of statistical principles. Professor Hsu, over the years, challenged me with

pointed questions to achieve more than I already had and to further improve the quality

and depth of my work. For these things, I am grateful. Finally, I would like to thank

Professor Yew for his encouragement and counsel.

I would also like to thank Professor Sachin Sapatnekar and Professor George Karypis,

two of my doctoral examination committee members, for their willingness to serve on my

committee and for their insightful comments and criticisms.

I would like to acknowledge the technical advice, the all-too-often unrequited help, and,

foremost, the friendship that was given to me by Ying Chen, Youngsoo Choi, Peng-fei

Chuang, Bob Glamm, Chris Hescott, Baris Kazar, Sreekumar Kodakara, Dr. Jin Lin,

Keith Osowski, Professor Resit Sendag, and Keqiang Wu. We laughed together, we

“enjoyed life” together, and we grew up as engineers – and as people – together.

Collectively, you inspired me, you challenged me, and you reassured me. Truly, our

shared memories make parting such sweet sorrow.

And finally, to my family, I offer my most heartfelt and gracious thanks. To my parents,

C. James Yi, Ph.D. and Judy Yi, and to my sisters, Jennifer Yi, Ph.D. and Joanna Yi,

M.D.-to-be, the work encapsulated in this dissertation was possible only with your

steadfast encouragement, your earnest prayers, and your loving comfort. You lifted me

up when I was down, you brightened my path in the midst of stormy trials, and you

sustained my confidence in times of doubt. For these things, and the countless others that

are not written here, since any words that I may muster are starkly pale in comparison, I

simply say, thank you, and thank you for loving me.

Joshua J. Yi

December 2003

Minneapolis, Minnesota

Soli Deo Gloria

i

Table of Contents

Abstract xii

1 Introduction 1

1.1 Superscalar Microprocessors 2

1.2 Instruction-Level Parallelism and Data Dependences 4

1.3 Superscalar Performance 6

1.4 Redundant Computations 7

1.5 Value Reuse: Effect and Shortcomings 9

1.6 Instruction Precomputation 10

1.7 Simplification and Elimination of Trivial Computations 11

1.8 The Efficacy, Utility, and Necessity of Simulators 13

1.9 The Deficiencies of Existing Simulation Methodologies 14

1.10 Contributions of this Dissertation 17

1.11 Dissertation Organization 17

2 Instruction Precomputation 19

2.1 Problems with Existing Value Reuse Mechanisms 19

2.2 The Amount of Redundant Computation 21

2.2.1 Global-Level Redundant Computations 23

2.2.2 A Comparison of the Amount of Global and Local Level

Redundant Computation 26

2.3 The Mechanics of Instruction Precomputation 29

2.3.1 How it Improves Performance 33

2.4 A Comparison of Instruction Precomputation and Value Reuse 34

3 Trivial Computations 35

3.1 Definition of Trivial Computations and How to Exploit Them 35

3.2 The Amount of Trivial Computations 37

ii

3.3 The Mechanics of Trivial Computation Simplification and Elimination 41

3.4 Hardware Cost to Simplify and Eliminate Trivial Computations 44

4 Simulation Methodology 45

4.1 An Overview of Simulation Methodology 45

4.1.1 Principal Steps of the Simulation Process 47

4.1.2 Focus of this Dissertation 50

4.2 Fractional Multifactorial Design of Experiments 51

4.2.1 Comparison of Statistical Designs 52

4.2.1.1 One-at-a-Time Design 52

4.2.1.2 Full Multifactorial Design: Analysis of Variance

(ANOVA) Design 53

4.2.1.3 Fractional Multifactorial Design: Plackett and Burman

Design 55

4.2.2 Mechanics of Plackett and Burman Designs 56

4.3 Processor Parameter Selection 59

4.4 Benchmark Selection 61

4.5 Analysis of a Processor Enhancement 62

4.6 Summary 64

5 Experimental Framework 66

5.1 The SimpleScalar Superscalar Simulator 66

5.2 Instruction Precomputation and Trivial Computation Parameters 67

5.3 Plackett and Burman Parameters 69

5.4 Benchmarks and Input Sets 72

6 Performance Evaluation 76

6.1 Instruction Precomputation Performance Results 76

6.1.1 Upper-Bound – Profile A, Run A 77

6.1.2 Different Input Sets – Profile B, Run A 80

6.1.3 Combination of Input Sets – Profile AB, Run A 82

iii

6.1.4 Frequency versus Frequency and Latency Product 85

6.1.5 Performance of Instruction Precomputation versus Value Reuse 87

6.1.6 Summary 89

6.2 Performance Results for Exploiting Trivial Computations 89

6.2.1 Realistic Processor Configuration 90

6.2.2 Enhanced Processor Configuration 92

6.2.3 Summary 95

6.3 The Results of Applying a Statistically Rigorous Simulation

Methodology 95

6.3.1 Analysis of Processor Parameters for Parameter Value

Selection 96

6.3.2 Analysis of Benchmarks for Benchmark Selection 101

6.3.3 Analysis of the Effect of Processor Enhancements 104

6.3.4 Summary 108

7 Related Work 109

7.1 Value Locality 109

7.1.1 Redundant Computations 110

7.2 Value Reuse and Prediction 111

7.2.1 Value Reuse 111

7.2.2 Value Prediction 114

7.2.2.1 Simple Value Predictors 115

7.2.2.2 Complex (Hybrid) Value Predictors 116

7.3 Simplification and Elimination of Trivial Computations 117

7.4 Prior Work in Simulation Methodology 119

7.4.1 Simulation Validation 119

7.4.2 Reducing the Simulation Time 121

7.4.3 Benchmark and Input Set Characterization 124

7.4.4 Processor Parameter Analysis 126

iv

8 Future Work 128

8.1 Instruction Precomputation 128

8.2 Simplification and Elimination of Trivial Computations 129

8.3 Improving Computer Architecture Simulation and Design

Methodology 130

8.3.1 Simulation Methodology 130

8.3.2 Design Methodology 133

9 Conclusion 134

Bibliography 140

Appendix A – Supplemental Results 144

Appendix B – List of Publications 165

v

List of Figures

Figure 1.1.1 Functional-Level Organization of a Superscalar Processor3

Figure 1.2.1 Assembly Code Example of Read-After-Write Dependences 4

Figure 1.4.1 Example of a Source of Redundant Computations 7

Figure 1.4.2 Example of Global and Local Level Redundant

Computations 8

Figure 2.1.1 Four-Entry Value Reuse Table and its Processor Interface 20

Figure 2.2.1.1 Frequency Distribution of Unique Computations per

Benchmark, Global-Level, Normalized 23

Figure 2.2.1.2 Percentage of Dynamic Instructions Due to the Unique

Computations in each Frequency Range, Global-Level,

Normalized 24

Figure 2.2.2.1 Frequency Distribution of Unique Computations per

Benchmark, Local-Level, Normalized 27

Figure 2.2.2.2 Percentage of Dynamic Instructions Due to the Unique

Computations in each Frequency Range, Local-Level,

Normalized 27

Figure 2.3.1 Operation of a Superscalar Pipeline with Instruction

Precomputation 32

Figure 3.2.1 Percentage of Trivial Computations per Instruction Type

and per Total Number of Dynamic Instructions for the

SPEC and MediaBench Benchmarks 40

Figure 3.3.1 Trivial Computation Hardware and Its Processor Interface42

Figure 6.1.1.1 Speedup Due to Instruction Precomputation; Profile Input

Set A, Run Input Set A, Frequency 78

Figure 6.1.2.1 Speedup Due to Instruction Precomputation; Profile Input

Set B, Run Input Set A, Frequency 80

vi

Figure 6.1.3.1 Speedup Due to Instruction Precomputation; Profile Input

Set AB, Run Input Set A, Frequency 83

Figure 6.1.4.1 Speedup Due to Instruction Precomputation for the Highest

Frequency and Latency Product Unique Computations;

Profile B, Run A 86

Figure 6.1.5.1 Speedup Due to Value Reuse; Run A 88

Figure 6.2.1.1 Speedup Due to the Simplification and Elimination of

Trivial Computations for Selected SPEC 2000

Benchmarks, Realistic Processor Configuration 90

Figure 6.2.1.2 Speedup Due to the Simplification and Elimination of

Trivial Computations for Selected MediaBench

Benchmarks, Realistic Processor Configuration 91

Figure 6.2.2.1 Speedup Due to the Simplification and Elimination of

Trivial Computations for Selected SPEC 2000

Benchmarks, Enhanced Processor Configuration 93

Figure 6.2.2.2 Speedup Due to the Simplification and Elimination of

Trivial Computations for Selected MediaBench

Benchmarks, Enhanced Processor Configuration 94

Figure 6.3.2.1 Cluster Analysis Results (i.e. Dendrogram) for the Large

MinneSPEC Input Set 102

Figure A2.2.1.1 Frequency Distribution of Unique Computations per

Benchmark, Global-Level, Normalized, Input Set B 145

Figure A2.2.1.2 Percentage of Dynamic Instructions Due to the Unique

Computations in each Frequency Range, Global-Level,

Normalized, Input Set B 146

Figure A2.2.2.1 Frequency Distribution of Unique Computations per

Benchmark, Local-Level, Normalized, Input Set B 148

Figure A2.2.2.2 Percentage of Dynamic Instructions Due to the Unique

Computations in each Frequency Range, Local-Level,

Normalized, Input Set B 149

vii

Figure A3.2.1 Percentage of Trivial Computations per Instruction Type

and per Total Number of Dynamic Instructions for the

SPEC and MediaBench Benchmarks 151

Figure A6.1.1.1 Speedup Due to Instruction Precomputation; Profile Input

Set B, Run Input Set B, Frequency 152

Figure A6.1.2.1 Speedup Due to Instruction Precomputation; Profile Input

Set A, Run Input Set B, Frequency 153

Figure A6.1.3.1 Speedup Due to Instruction Precomputation; Profile Input

Set AB, Run Input Set B, Frequency 154

Figure A6.1.4.1 Speedup Due to Instruction Precomputation for the Highest

Frequency and Latency Product Unique Computations;

Profile A, Run B 155

Figure A6.1.4.2 Speedup Due to Instruction Precomputation for the Highest

Frequency and Latency Product Unique Computations;

Profile A, Run A 156

Figure A6.1.4.3 Speedup Due to Instruction Precomputation for the Highest

Frequency and Latency Product Unique Computations;

Profile B, Run B 157

Figure A6.1.4.4 Speedup Due to Instruction Precomputation for the Highest

Frequency and Latency Product Unique Computations;

Profile AB, Run A 158

Figure A6.1.4.5 Speedup Due to Instruction Precomputation for the Highest

Frequency and Latency Product Unique Computations;

Profile AB, Run B 159

Figure A6.1.5.1 Speedup Due to Value Reuse; Run B 160

Figure A6.2.1.1 Speedup Due to the Simplification and Elimination of

Trivial Computations for Selected SPEC 2000

Benchmarks, Realistic Processor Configuration, Input Set

B 161

Figure A6.2.1.2 Speedup Due to the Simplification and Elimination of

Trivial Computations for Selected MediaBench

viii

Benchmarks, Realistic Processor Configuration, Input Set

B 162

Figure A6.2.2.1 Speedup Due to the Simplification and Elimination of

Trivial Computations for Selected SPEC 2000

Benchmarks, Enhanced Processor Configuration, Input Set

B 163

Figure A6.2.2.2 Speedup Due to the Simplification and Elimination of

Trivial Computations for Selected MediaBench

Benchmarks, Enhanced Processor Configuration, Input Set

B 164

ix

List of Tables

Table 2.2.1 Example Unique Computations 22

Table 2.2.1.1 Characteristics of the Unique Computations for the Top

2048 Global-Level Unique Computations, by Frequency 26

Table 2.2.2.1 Percentage of Instructions Due to the 2048 Highest

Frequency Unique Computations at the Global and Local

Levels 29

Table 2.3.1 Number of Unique Computations that are Present in Two

Sets of the 2048 Highest Frequency Unique Computations

from Two Different Input Sets 30

Table 3.2.1 List of Trivial Computations 38

Table 3.2.2 Trivial Computations that Benefit From Non-Speculative,

Early Execution 38

Table 4.2.2.1 Plackett and Burman Design Matrix with Foldover (X=8) 57

Table 5.2.1 Key Processor and Memory Parameters for the

Performance Evaluation of Instruction Precomputation and

the Simplification and Elimination of Trivial Computations 68

Table 5.3.1 Processor Core Parameters and Their Plackett and Burman

Values 70

Table 5.3.2 Functional Units Parameters and Their Plackett and

Burman Values 70

Table 5.3.3 Memory Hierarchy Parameters and Their Plackett and

Burman Values 71

Table 5.4.1 Selected SPEC CPU 2000 Benchmarks and Input Sets

(Dynamic Instruction Count in Millions of Instructions) 73

Table 5.4.2 Selected MediaBench Benchmarks and Input Sets

(Dynamic Instruction Count in Millions of Instructions) 74

x

Table 5.4.3 Selected SPEC CPU 2000 Benchmarks with the Large

Input Set (Dynamic Instruction Count in Millions of

Instructions) 74

Table 6.1.2.1 Speedup Due to Instruction Precomputation for mesa;

Profile Input Set A, Run Input Set A versus Profile Input

set B, Run Input Set A, Frequency 81

Table 6.1.3.1 Number of Unique Computations that are Present in Two

Sets of 2048 of the Highest Frequency Unique

Computations from Two Different Input Sets 84

Table 6.3.1.1 Plackett and Burman Design Results for All Processor

Parameters; Ranked by Significance and Sorted by the

Average Sum-of-Ranks 97

Table 6.3.1.2 Plackett and Burman Design Results for All Processor

Parameters; Ranked by Significance and Sorted by the

Average Sum-of-Ranks; Reduced Cache Sizes 100

Table 6.3.2.1 Example of Benchmark Selection, Choosing Eight

Benchmarks from Thirteen 103

Table 6.3.3.1 Plackett and Burman Design Results for All Processor

Parameters When Using Instruction Precomputation;

Ranked by Significance and Sorted by the Average Sum-

of-Ranks 105

Table 6.3.3.1 Plackett and Burman Design Results for All Processor

Parameters When Simplifying and Eliminating Trivial

Computations; Ranked by Significance and Sorted by the

Average Sum-of-Ranks 107

Table A2.2.1.1 Characteristics of the Unique Computations for the Top

2048 Global-Level Unique Computations, Input Set B 147

Table A2.2.2.1 Percentage of Instructions Due to the 2048 Highest

Frequency Unique Computations at the Global and Local

Levels, Input Set B 150

xi

Table A4.1 Selected MediaBench Benchmarks and Input Sets

(Dynamic Instruction Count in Millions of Instructions),

Input Set B 151

xii

Abstract

Although current commercial processors are capable of fetching and executing multiple

instructions per cycle, processor resources such as issue slots, functional units, and

buffers are frequently idle due to the lack of available instruction-level parallelism. As a

result, the processor’s actual performance is often far below its theoretical maximum

performance. To increase the amount of instruction-level parallelism, this dissertation

proposes two microarchitectural techniques that dynamically remove redundant and

trivial computations. A redundant computation is a computation that the processor

performs repeatedly during the course of a program’s execution while a trivial

computation is one where the output is zero, one, 0xffffffff, or a shifted version of one of

the inputs.

The first technique, Instruction Precomputation, compares each instruction’s opcode and

input operands against the opcode and input operands that are stored in the

Precomputation Table. If the opcodes and input operands match, the Precomputation

Table forwards the result for that redundant computation to the associated instruction.

Our results show that the 2048 highest frequency redundant computations account for

14.68% to 44.49% of the total dynamic instruction count. Using Instruction

Precomputation to dynamically remove these redundant computations yields speedups of

xiii

0.71% to 45.40%, with an average of 10.53%, when using a 2048-entry Precomputation

Table.

The second technique, the Simplification and Elimination of Trivial Computations,

checks the opcode and input operands of each instruction to determine whether or not that

computation is trivial or not. When the trivial computation can be simplified, the

instruction is converted to another type of instruction that produces the same result, but

with a lower execution frequency. When the trivial computation can be eliminated, the

trivial computation hardware “computes” its result and removes the instruction from the

pipeline. Our results show that 12.24% and 5.73% of all dynamic instructions in selected

SPEC 2000 and MediaBench, respectively, benchmarks are trivial computations. Adding

hardware to exploit these trivial computations yields speedups of 1.31% to 27.36%, with

an average of 8.86%, for the SPEC 2000 benchmarks and speedups of 2.97% to 13.97%,

with an average of 4.00%, for the MediaBench benchmarks.

Finally, due to cost, time, and flexibility constraints, simulators are used in the design and

implementation of next-generation processors and to evaluate the performance of

processor enhancements. Despite this dependence on simulators, computer architects

usually approach the simulation process in an ad-hoc manner. Mistakes and irregularities

in the simulation process may introduce errors into the simulation results. On the other

hand, using statistically-based simulation methodology helps the architect decrease the

number of errors in the simulation process, gives more insight into the effect of a

processor design or enhancement, and provides statistical support to the observed

behavior. This dissertation proposes and demonstrates the efficacy of using the statistical

Plackett and Burman design to improve how processor parameter values are chosen, how

benchmarks are chosen, and how processor enhancements are analyzed. In particular, the

results show the effect that Instruction Precomputation and exploiting trivial

computations have on the processor.

This dissertation makes the following primary contributions. First, this dissertation

quantifies the amount of redundant and trivial computations that are present in typical

xiv

programs. Second, to exploit these two program characteristics, this dissertation

proposes and demonstrates the performance potential of two microarchitectural

enhancements: Instruction Precomputation and Simplifying and Eliminating Trivial

Computations. Finally, this dissertation identifies problems with existing simulation

methodologies and offers specific, statistically-based recommendations to improve the

overall quality of simulation methodology.

1

Chapter 1

Introduction

In the past few years, superscalar processors have become the most popular processor

architecture due to their high-performance. Examples of superscalar processors include

the Alpha 21264 [Kessler98, Kessler99, Leiholz97], the MIPS R10000 [Yeager96], the

UltraSparc III [Horel99], and the PA-RISC 8000 [Kumar97]. To achieve even more

performance, processor designers can increase the clock frequency and/or increase the

number of instructions that the processor decodes, issues, executes, and retires per clock

cycle.

Since higher clock frequencies do not yield proportional increases in the processor’s

performance and since the maximum clock frequency is constrained by the minimum

transistor width, processor designers primarily try to improve the processor’s

performance by maximizing the number of retired instructions per cycle. While current-

generation processors are capable of decoding, issuing, executing, and retiring several

instructions in a single cycle, only independent instructions can be issued in the same

cycle. One measure of how independent the instructions are for a given region of a

program is the amount of instruction-level parallelism (ILP). The next two sections

briefly discuss the key components of superscalar processors and the effect that

dependences between instructions have on the ILP.

2

1.1. Superscalar Microprocessors

As specified by the von Neumann model [Hennessy96], the two main components of

modern processors are the execution core and memory. Caches, the memory structures

closest to the processor (in terms of access time), are used to hold recently accessed data

and instructions. To improve the performance of retrieving data and instructions, the L1

Caches – the caches closest to the processor – are split into separate caches, one for data

and one for instructions. This model of cache partitioning is called the Harvard

Architecture [Hennessy96].

The L1 Instruction Cache (or I-Cache), the L1 Data Cache (D-Cache), and the L2 Cache

buffer instructions and data that will likely be needed in the near future. When using

these caches, instead of retrieving the requested blocks from main memory – which

requires hundreds of cycles – the requested blocks can be retrieved from a cache.

Consequently, reducing the access time for those memory blocks reduces the overall

program execution time.

The purpose of the execution core is to execute the assembly-level instructions of the

program. Its main components are: the instruction fetch logic, the branch predictor and

target buffer, the decode logic, the register file, the reorder buffer (ROB), the issue logic,

and the functional units. The instruction fetch logic uses predictions and target addresses

from the branch predictor and target buffer, respectively, to efficiently retrieve

instructions from memory and store them into the instruction fetch queue (IFQ). The

decode logic decodes instructions in the IFQ, retrieves their input operands from the

register file or ROB, and moves the decoded instructions into the ROB. In addition to

buffering the current state of each in-flight instruction, the ROB stores and also retires

these instructions in program order to support precise exceptions. The issue logic

determines which instructions are ready to execute – the ones that have all of their input

operand values – and sends them to the functional units. The functional units compute

3

the results of arithmetic and logical instructions, store or load data values to and from the

memory hierarchy, and determine the branch direction and target.

Figure 1.1.1 shows the functional-level organization of the typical superscalar processor.

To improve the readability of the figure, the branch target buffer is represented by the

branch predictor. For the same reason, the L2 Cache and main memory are omitted.

Figure 1.1.1: Functional-Level Organization of a Superscalar Processor

The hallmark of superscalar processors is that they fetch, decode, execute, and retire

multiple instructions per cycle. Consequently, the fetch logic, the decode logic, and the

functional units operate on several instructions every cycle.

Level-1 Instruction Cache

Level-1 Data Cache

Instruction Fetch Logic
Branch

Predictor

Instruction Fetch Queue

Instruction Decode Logic

Reorder Buffer

Register

File

Instruction Issue Logic

Load
Store
Queue

Integer

Units

Branch

Unit

FP

Units

Integer

Mult/Div

FP

Mult/Div

4

However, due to branch instructions – or control dependences, the average number of

fetched instructions is often far below the fetch width (maximum number of instructions

that can be fetched per cycle). By lowering the average number of instructions that are

fetched per cycle, control dependences also reduce the number of instructions that are

being decoded, executed, or retired in any given cycle. Branch predictors, branch target

buffers, and instruction fetch queues minimize, but cannot completely eliminate, the

effect of control dependences.

1.2. Instruction-Level Parallelism and Data Dependences

In addition to control dependences, data dependences also reduce the actual performance

from the theoretical peak performance. A read-after-write (RAW) data dependence exists

between two instructions if the result of the first instruction is used to calculate the result

of the second. For example, consider the assembly code shown in Figure 1.2.1.

Figure 1.2.1: Assembly Code Example of Read-After-Write Dependences

In Figure 1.2.1, RAW data dependences exist between the add and sub instructions as

well as between the mul and sra instructions. In the former pair, the add computes and

then stores a value into register r1 , which the sub instruction uses as an input value. In

the latter pair, the mul instruction stores its result in register r1 , which is subsequently

read by the following instruction (sra) . For each pair of the instructions, the second

instruction cannot execute before the first since it needs the result of the first.

loop: lw r1,r2 ; r1 = Mem[r2]
add r1,r2,r3 ; r1 = r2 + r3
sub r4,r1,r5 ; r4 = r1 – r5
mul r1,r2,r3 ; r1 = r2 * r3
sra r2,r1,1 ; r2 = r1 >> 1
beq r7,r1,loop ; Branch if r7 = r1

5

Consequently, a RAW data dependence exists between the first and second instructions

of each pair through register r1 .

Figure 1.2.1 also shows two other types of data dependences: write-after-write (WAW)

and write-after-read (WAR). A WAW data dependence occurs when two instructions

write to the same register value. For example, in Figure 1.2.1, WAW data dependences

exist between the lw and add instructions as well as between the add and mul

instructions, both through register r1 . For each pair of instructions, the second

instruction cannot write its output value to the shared register until after the first

instruction has written its output value.

The WAR data dependence exists between two instructions if the second instruction

writes to a register that the first reads from. In Figure 1.2.1, WAR dependences exist

between the sub and mul instructions through register r1 as well as between the mul

and the sra instructions through register r2 . Due to this dependence, the second

instruction cannot write its output value to the shared register until after the first has read

the register.

Since data dependences exist between instructions, the processor cannot issue or execute

those instructions completely in parallel. This has two important ramifications. First of

all, since processors are designed with enough resources to issue and execute multiple

instructions in parallel, processor resources are idle when executing instructions with data

dependences. Second, the serial execution of these instructions reduces the processor’s

performance from its theoretical maximum. Therefore, to improve the processor’s

resource utilization efficiency and, more importantly, to improve its actual overall

performance, it is imperative to decrease the number of dependent instructions.

In addition to control and data dependences, the other major factor that limits the amount

of ILP is the execution latency of instructions, or more specifically, the execution latency

of load instructions. While many instructions have multi-cycle execution latencies, load

instructions latencies have a disproportionately large effect on the performance since they

6

have a very wide range of latencies, despite using multi-level data caches and other

microarchitectural techniques such as out-of-order execution and prefetching.

Instructions with very long execution latencies limit the amount of ILP by reducing the

rate at which instructions are executed by the processor.

In summary, the number of instructions that can be issued and executed in parallel is

primarily limited by the amount of ILP. Control and data dependences, in addition to

long and variable instruction latencies, have a very large, negative effect on the

processor’s performance. Therefore, to improve the processor’s performance, computer

architects try to break the control and data dependences or reduce the effective instruction

latency. The next few sub-sections introduce two techniques – Instruction

Precomputation and the Simplification and Elimination of Trivial Computations –

that attempt to break data dependences and reduce the execution latency.

1.3. Superscalar Performance

There are many different ways to measure a processor’s performance, such as speedup,

SPEC number, millions of instructions per second (MIPS), etc. [Lilja00], but one of the

more meaningful metrics – and perhaps the most important – is the total execution time

of the program on that particular processor. The total amount of time it takes to execute a

program is approximated by Equation 1.3.1.

Te = n * CPI * Tc

Equation 1.3.1: Formula for the Total Program Execution Time

Where

n Total number of executed instructions

CPI Average number of cycles needed to execute an instruction

Tc Time per clock period (cycle)

7

Note that the reciprocal of CPI (cycles per instruction) is IPC (instructions per cycle).

Equation 1.3.1 shows that the execution time Te is proportional to n, CPI, and Tc.

Consequently, to reduce the program’s total execution time, it is necessary to either: 1)

Reduce the number of executed instructions, 2) Decrease the average execution time of

each instruction, and/or 3) Decrease the clock period. However, since the number of

instructions in the program cannot be reduced at run-time (i.e. by hardware) and since

clock period is based on the minimum transistor width, the only viable option for

computer architects to reduce the program’s execution time is to reduce the CPI.

1.4. Redundant Computations

During the course of a program’s execution, a processor executes many redundant

computations. A redundant computation is a computation that the processor had

performed earlier in the program. For example, consider the code fragment shown in

Figure 1.4.1:

Figure 1.4.1: Example of a Source of Redundant Computations

For each iteration of the outer loop, the calculations for the loop index variable j are

exactly the same. More specifically, the calculations for j are: 0+1, 1+1, 2+1, … , 98+1,

99+1, 0+1, 1+1, 2+1, … , 98+1, 99+1, 0+1, etc. Therefore, after the first iteration of the

outer loop, all the computations to compute each value of j are redundant.

for (i=0; i < MAX; i++)
{

for (j=0; j < MAX; j++)
{

…
}

8

It is important to note that redundant computations are not limited only to add

instructions. Rather, any and all computations can be redundant. Furthermore, it is also

important to note that an optimizing compiler may not be able to remove these redundant

computations during the compilation process since the actual input operand values may

be unknown at compile time – possibly because they depend on the inputs to the

program.

Redundant computations can be divided into global and local level redundant

computations. The difference between the two is that the global-level redundant

computations are independent of the Program Counter (PC) while local-level redundant

computations are dependent on the PC. Figure 1.4.2 illustrates the difference between the

two levels.

Figure 1.4.2: Example of Global and Local Level Redundant Computations

In this example, there are no local-level redundant computations since either instruction

does not, itself, repeat a computation. However, at the global-level, there are 100

redundant computations since both instructions perform the same operations on the same

input operand values. From this example, it is obviously that there are more redundant

computations at the global-level, which is an important distinction when trying to

improve the processor’s performance by exploiting redundant computations.

Redundant computations affect the program’s execution time in two ways. First of all,

executing the instructions for redundant computations increases the program’s dynamic

instruction count. Secondly, these redundant computations affect the average CPI since

add r1,r1,#1 ; r1 = r1 + 1
; 0+1, 1+1, 2+1, 3+1, 4+1, … , 98+1, 99+1

...

add r2,r3,r4 ; r2 = r3 + r4
; 1+0, 1+1, 1+2, 1+3, 1+4, … , 1+98, 1+99

9

they produce values for other instructions in the program. However, these redundant

computations need to be executed to ensure correct program operation. Additionally, all

of the instances of these instructions may not be redundant computations. Consequently,

the hardware cannot simply disregard these computations at run-time to decrease the

program’s execution time. Thus, the only recourse to improve the processor’s

performance, with respect to redundant computations, is to reduce the CPI of the

redundant computations.

1.5. Value Reuse: Effect and Shortcomings

Value reuse [Sodani97, Sodani98] is a microarchitectural technique that improves the

processor’s performance by dynamically removing redundant computations from the

processor’s pipeline. During the program’s execution, the value reuse hardware

compares the opcode and input operand values of the current instruction against the

opcodes and input operand values (hereafter, alternatively referred to as a unique

computation) of all recently executed instructions, which are stored in the value reuse

table (VRT). If there is match between the opcodes and input operand values, then the

current instruction is a redundant computation and, instead of continuing its execution,

the current instruction gets its output value from the result stored in the VRT. On the

other hand, if the current instruction’s opcode and input operand values do not match

those found in the value reuse table, then the instruction is not a recent redundant

computation and it executes normally. After finishing execution, the value reuse

hardware stores the opcode, input operand values, and output value for that instruction

into the VRT.

While value reuse increases the amount of ILP – thus improving the processor’s

performance – it does not necessarily effectively target the redundant computations that

have the most effect on the program’s execution time. This shortcoming stems from the

fact that the VRT is finite in size. Consequently, when all entries of the VRT are

occupied and when the current instruction tries to store its unique computation and output

10

value into the VRT, the contents of one entry are overwritten. However, if the current

unique computation is executed less often than that of the one it replaces, then the current

unique computation is less useful in increasing the amount of ILP since it occurs less

often. In other words, due to dynamic replacement, the entries in the VRT are not

necessarily the unique computations that have the greatest impact on the total program

execution time.

To address this problem, this dissertation proposes a microarchitectural technique called

Instruction Precomputation.

1.6. Instruction Precomputation

As described in the previous sub-section, one problem with value reuse is that a unique

computation with a low frequency of execution could replace a high frequency one.

However, since it is virtually impossible for hardware to determine at run-time which

unique computations have the highest frequencies of execution, Instruction

Precomputation uses feedback-directed optimization to first determine, at compile-time,

the highest frequency unique computations. At run-time, those unique computations are

then loaded into the Precomputation Table (PT), which is very similar to the VRT with

the key exception that entries in the PT are not updated during the program’s execution.

In other words, in value reuse, the hardware determines which unique computations

should be in the VRT while in Instruction Precomputation, the compiler controls which

unique computations are in the PT.

Using the compiler to statically determine which unique computations have the highest

frequencies has two key advantages over using hardware. First, and most importantly,

the compiler is able to determine if a unique computation is a high frequency unique

computation or not. Although the compiler only profiles the program with one or two

different inputs, previous work showed that the same program with different inputs sets

had many high frequency unique computations in common. In other words, determining

11

the highest frequency unique computations of a program with a specific input will most

likely yield the highest frequency unique computations for the same program, but with a

different input. Second, determining the highest frequency unique computations with the

compiler means that fewer access ports are needed to access the PT. When the hardware

is used to profile a program, additional access ports are needed to allow the hardware to

write to the table. However, when using the compiler, the PT is never updated.

Therefore, no additional write ports are needed. Having fewer access ports results in a

lower PT access time, which means that Instruction Precomputation has a lower impact

on the clock period.

1.7. Simplification and Elimination of Trivial Computations

In addition to repeatedly performing many redundant computations during the course of

the program’s execution, the processor also executes many trivial computations. A trivial

computation can be defined as a computation where the output value is zero, one, or a

shifted version of one of the input operands. For example, using definitions given in this

dissertation, each of the following computations are trivial: X+0, X–X, X*2, and X/1.

Since these particular computations are trivial – or more precisely, their output value is

trivial – the processor can reduce the execution latency of these computations either by

“calculating” the output value without using a functional unit or by simplifying the

computation so it can use a functional unit with a lower execution latency. The

remainder of this sub-section describes in more detail how trivial computations can be

simplified or eliminated to improve the processor’s performance.

As in the case of redundant computations, it is important to note that an optimizing

compiler may not be able to remove these trivial computations since the actual input

operand values may be unknown at compile time. As a result, removing or optimizing

the execution of these trivial computations is best left to the hardware.

12

Trivial computations affect the program’s execution time in the same two ways as do

redundant computations. First of all, performing trivial computations increases the

program’s dynamic instruction count. Second, performing these trivial computations

increases the overall, average CPI since these instructions produce input values for other

instructions in the program. However, since these trivial computations need to be

performed for correct program execution, to minimize their effect on the processor’s

performance, the only recourse is to reduce their latency.

As described in the previous sub-section, there are two methods to reduce the CPI of

trivial computations. In the first method, the processor eliminates the trivial computation

completely by computing the final result of the instruction without a functional unit. In

the second method, the processor reduces the complexity, and consequently the execution

latency, of the trivial computation by converting the operation into another operation.

For example, consider the following computations: X-X and X*4, where X is the value of

one the input operands. Since the result of the first computation will be zero, regardless

of the value of X, it is pointless to perform that computation using a functional unit since

the result is trivial. In this particular case, by assigning the value of zero to that

computation, the trivial computation hardware can reduce the execution latency of this

instruction.

The result of the second computation is simply the value of X shifted to the left by two

bit positions. Therefore, instead of performing this computation normally by using an

integer multiply unit, the processor can perform this computation by converting this

computation to a shift-left operation. And since shifts have a lower latency as compared

to multiplies, dynamically changing the instruction from a multiply instruction to a shift-

left instruction will decrease the CPI for this instruction, thus decreasing the overall

program execution time.

In addition to reducing the execution latency of trivial computations, eliminating these

trivial computations also has another key benefit: non-speculative early instruction

13

execution. For most superscalar processors, an instruction is issued (sent to the

functional units) only after it has been decoded and after it has received the values for

both its input operands. However, for the trivial computations that can be eliminated, if

`the instruction has received the value for the trivial input (e.g. 0 for X*0), the instruction

does not need to wait for the other input operand value to arrive since the output can be

computed purely as a result of the trivial one. Consequently, by exploiting these trivial

computations in this way, the processor can exceed the dataflow limit (the maximum

amount of ILP when given an infinite amount of hardware) non-speculatively.

The key difference between non-speculative and speculative instruction execution is that

the output value of the latter is computed based on predicting what its input values might

be, executing it with those input values (generating a speculative output value), and then

executing any dependent instructions with that speculative output value. Therefore,

before that instruction can be committed, the processor needs to verify if the input values

were correctly predicted. If so, the output value of that instruction and any dependent

instructions can be written to the register file. If not, then the processor needs to re-

execute all dependent instructions that used the incorrect value. For those instructions

that can be executed non-speculatively, the processor does not need to check if the

prediction is correct (since no prediction was made) and can immediately commit its

output value.

1.8. The Efficacy, Utility, and Necessity of Simulators

Simulators are the most important tool in computer architecture research. Due to cost,

time, and flexibility constraints, simulators are often used to explore the design space

when developing a new processor architecture or to evaluate the effectiveness of a

proposed processor enhancement (hardware or software). For instance, simulators reduce

the cost and development time of a new processor design by giving the architecture

design team ballpark estimates of the processor’s performance. Without simulators in

this case, the team would have to use intuition or actually fabricate the chip to evaluate

14

the performance of each candidate design. Consequently, without simulators, designing

processors either would be too expensive or would yield very poor designs.

1.9. Deficiencies of Existing Simulation Methodologies

Despite this level of dependence on simulators, computer architects usually approach the

simulation process in an ad-hoc manner. Consequently, the results that computer

architects obtain from their simulations may be not completely accurate, or worse yet,

may be misleading. Furthermore, an ad-hoc simulation methodology does not

necessarily extract the maximum amount of information from the results.

For example, a sensitivity analysis is frequently utilized to determine the effect that

different processor parameters have on a processor enhancement. To test the effect of

each parameter, the computer architect will vary one or more parameters at a time while

holding the other parameters at a constant value and measure the effect of the variable

parameter(s) on the processor enhancement. However, before starting the simulations,

several questions about sensitivity analysis itself need to be answered. For example,

which parameters should be varied? What range of values should be used for those

parameters? Do any of the constant parameters interact with the variable ones? What is

the magnitude of those interactions? How much impact do the specific values of the

constant parameters have?

Furthermore, in addition to the questions about the sensitivity analysis setup, other

questions regarding the simulation setup need to be answered. For example, which

benchmarks (i.e. programs) should be used in the sensitivity analysis? Which input set

(to the benchmark) should be used? If the input set is relatively short, what effects does

its length have as compared to a longer input set? How should those effects be

mitigated?

15

These questions and more are the type of questions that need to be answered before

starting the simulations. However, due to the sheer computational cost, it is virtually

impossible to simulate all possible combinations of parameters or to fully answer all of

the simulation setup questions. This situation illustrates the need for a statistically-based

simulation methodology.

While the downside of using such a methodology is that it may require some additional

simulations, it also has the following advantages:

1) It decreases the number of errors that are present in the simulation process

and helps the computer architect detect errors more quickly. Errors

include, but are not limited to, simulator modeling errors, user

implementation errors, and simulation setup errors [Black98, Cain02,

Desikan01, Gibson00, Glamm00].

2) It gives more insight into what is occurring inside the processor or the

actual effect that a processor enhancement has on the processor.

3) It gives objective confidence to the results and provides statistical support

regarding the observed behavior.

While the first and third advantages are self-explanatory, it is not obvious from the

second advantage how a statistically-based methodology could improve the quality of the

analysis. Since simulators are complex, it is very difficult to fully understand the effect

that a design change or an enhancement may have on the processor. As a result,

architects use high-level single-value metrics, such as speedup or cache miss rate, to

understand the “big-picture” effects. Unfortunately for this approach, these high-level

metrics sacrifice information for conciseness by discarding most of the information that is

available to the simulator for a single, neat assessment of the performance.

Consequently, important conclusions that are more subtle are overlooked. Furthermore,

since much information is discarded, only the net effect on the final metric of two

competing effects is known.

16

For example, suppose a new prefetching mechanism improves the processor’s

performance by 20%. Also suppose that in this case that this prefetching mechanism

decreases the importance of the cache’s associativity, but dramatically magnifies any

shortage in the number of load-store queue (LSQ) entries. While this may be the case,

the speedup only shows the net result of the associativity’s decreased effect and the

increased effect of the LSQ entries. As a result, while the overall speedup is quite good,

further analysis would reveal that this prefetching mechanism also moves the

performance bottleneck from the cache associativity to the LSQ entries.

Therefore, basing conclusions on a single high-level metric can be dangerous since that

metric shows the “big picture” only at a distance. However, analyzing the processor from

a statistical point-of-view can help the architect quantify the effects that all components

have on the performance and on other important design metrics (e.g. power consumption,

etc.).

More specifically, this dissertation improves the simulation methodology used by

computer architects by recommending specific procedures on how to:

1) Choose the processor parameter values.

2) Select a sub-set of benchmarks.

3) Analyze the effect that an enhancement has on the processor.

The first two recommendations target the simulation setup phase of the simulation

process while the last recommendation targets the analysis phase.

To illustrate the efficacy and utility of using a statistically-rigorous simulation

methodology, this dissertation uses this simulation methodology when evaluating the

performance of Instruction Precomputation and the Simplification and Elimination of

Trivial Computations, which is described in Section 6.3.3.

17

1.10. Contributions of this Dissertation

This Ph.D. dissertation makes the following contributions:

1) This dissertation quantifies the amount of redundant computations at the

global-level (PC-independent) and at the local-level (PC-dependent).

2) This dissertation proposes a feedback-directed optimization and hardware-

based processor enhancement called Instruction Precomputation that

yields speedups of 4.47% and 10.52% for a small and a large PT,

respectively.

3) This dissertation defines the range of and quantifies the amount of trivial

computations.

4) This dissertation proposes a set of hardware mechanisms that improve the

processor’s performance by Simplifying and Eliminating Trivial

Computations and by using a novel non-speculative scheduling

mechanism. This solution improves the processor’s performance by

8.22% for a typical processor and by 6.5% for an aggressive processor.

5) This dissertation makes specific recommendations on how to improve the

simulation methodology used by computer architects. Collectively, these

recommendations can improve the overall quality of the simulation

methodology, decrease the total number of simulations, quickly determine

the processor’s bottlenecks, and provide analytical insights into the impact

of processor enhancements, as compared to when no rigorous simulation

methodology is used.

1.11. Dissertation Organization

The remainder of dissertation is organized as follows: Chapters 2 and 3 describe

Instruction Precomputation and the Simplification and Elimination of Trivial

Computations in more detail while Chapter 4 does the same for statistically-based

18

simulation methodology. Chapter 5 describes the simulator, benchmarks, and input sets

that were used while Chapter 6 describes performance results for Instruction

Precomputation and by exploiting trivial computations. In addition, Chapter 6 also

illustrates how statistically-rigorous simulation methodology can improve the simulation

quality and analysis. Chapter 7 discusses previous work related to Instruction

Precomputation, exploiting trivial computations, and simulation methodology. Finally,

Chapter 8 describes the future work and Chapter 9 concludes.

19

Chapter 2

Instruction Precomputation

As described in Chapter 1, Instruction Precomputation is a microarchitectural technique

that improves the processor’s performance. The remainder of this chapter describes the

problem that Instruction Precomputation attempts to solve, the program characteristic that

it exploits, how it operates, and what hardware and compiler additions it needs.

2.1. Problems with Existing Value Reuse Mechanisms

As described in Chapter 1, and in more depth in Chapter 7, value reuse [Sodani97,

Molina99] is a hardware-based technique that dynamically removes instructions that are

redundant computations by forwarding the results of those computations from the value

reuse table (VRT) to that instruction. The VRT is an on-chip table that caches the input

operands and the results of previously executed computations. The processor uses the

program counter (PC) value for each instruction to access the VRT. An example of a

four-entry VRT is shown in Figure 2.1.1. To access the VRT, the processor uses the

instruction’s PC and input operands (labeled Input #1 and Input #2) to the VRT. If the

PCs and input operands match, the VRT sends the output value at that entry back to the

processor and that instruction is removed from the pipeline.

20

Figure 2.1.1: Four-Entry Value Reuse Table and its Processor Interface

Value reuse improves the processor’s performance by decreasing the execution latency of

each reused instruction and by decreasing the number of resource conflicts in the issue

and execute stages of the pipeline. Decreasing the latency of a reused instruction either

directly or indirectly reduces the execution time of the critical path; directly if the reused

instruction is on the critical path or indirectly if the reused instruction produces the value

of an input operand for an instruction that is on the critical path. Furthermore, since the

reused instruction does not pass through the remaining pipeline stages, the number of

resource conflicts (available issue slots, functional units, reservation station entries, etc.)

decreases.

While value reuse can improve the processor’s performance, two problems limit its

effectiveness. First of all, since the PC is used to index the VRT, value reuse can only

reuse the computations associated with each static instruction. Consequently, previous

computations can only be reused if that computation has already been performed for the

instruction associated with that particular PC. As a result, while another instruction of

that type, but with a different PC, may have previously performed that redundant

computation, the result of that computation cannot be reused since the results of the

second instruction cannot be accessed by the first instruction. In other words, value reuse

can be exploited only if that static instruction had previously performed that computation,

even though another instruction may have performed the identical computation.

Output

OutputPC Input #1 Input #2

OutputPC Input #1 Input #2

OutputPC Input #1 Input #2

PC Input #1 Input #2 Output

PC Input #1 Input #2

From the Processor To the Processor

21

Second, since the VRT is dynamically updated during the course of the program’s

execution, low frequency redundant computations could eventually fill a significant

percentage of the VRT’s entries. Replacing a high frequency redundant computation

with a low frequency one reduces the number of instructions that can reuse that

computation.

Overall, the net effect of these two problems is that value reuse can be rather inefficient

by not reusing previously executed computations and then evicting high frequency

computations in favor of lower ones. To address these two problems, and thus improve

the performance of value reuse, Instruction Precomputation uses the compiler to

determine the highest frequency, PC-independent redundant computations and then does

not allow those high frequency redundant computations to be replaced at run-time.

2.2. The Amount of Redundant Computations

There are two types of redundant computations. Local-level redundant computations are

redundant computations that are associated with a single PC value (i.e. PC-dependent)

while global-level redundant computations are PC-independent. For example, 0+0 with a

PC value of 0x8000 and 0+0 with a PC value of 0x8004 are two different local-level

redundant computations while they are the same global-level redundant computation.

Given these two definitions, the key question is: Which definition accounts for the

highest percentage of dynamic instructions, i.e. which definition affects the larger

percentage of the program’s instructions?

To determine the amount of redundant computation at both levels, the opcode, input

operands, and PC for all the dynamic instructions have to be stored. To reduce the

memory requirements for storing this information, in addition to storing the unique

computation itself, the total number of times that that unique computation was executed

was also stored. Recall that a unique computation is composed of the opcode and input

22

operand values. The instruction’s output value was not stored because it is a

deterministic function of the opcode and input operands values.

To determine the amount of global-level redundant computation, each unique

computation’s PC was set to 0. As a result, unique computations that have the same

opcode and input operands, but different PCs, map to the same unique computation.

Meanwhile, at the local-level, the unique computation’s PC was simply the instruction’s

PC.

To gather this information, a modified version of sim-fast from the SimpleScalar tool

suite [Burger97] was used. sim-fast is a functional simulator that it is optimized for

simulation speed. Consequently, it does not measure the execution time; it executes

instructions serially; and it does not model a processor’s pipeline, caches, etc. However,

this simulator is adequate to determine the amount of global and local level redundant

computation since the execution time, cache behavior, etc. are irrelevant when

determining the amount of redundant computation.

Table 2.2.1: Example Unique Computations

PC Unique Computation Frequency
0x1000 0+1 400
0x1000 0+9 350
0x1000 1+1 500
0x1000 1+2 450
0x1000 1+3 500
0x1000 1+4 450
0x1000 1+5 450
0x1000 1+6 450
0x1000 1+7 550

The term, frequency of repetition, appears in the following paragraphs. The frequency of

repetition, or frequency, is the number of times that a unique computation occurs (i.e. the

number of dynamic instructions associated with that particular unique computation) in

the program. Therefore, a unique computation is completely unique if it has a frequency

23

of repetition of 1. On the other hand, unique computations with a frequency greater than

one are redundant.

To illustrate how this term is used, Table 2.2.1 shows the computational history for the

static instruction 0x1000.

In the program, for this PC, the computation 0+9 occurs 350 times; 0+1 400 times; 1+2,

1+4, 1+5, and 1+6 450 times each; 1+1 and 1+3 500 times each; and 1+7 550 times. The

number of times that each computation occurs in the program is its frequency.

2.2.1. Global-Level Redundant Computations

Figure 2.2.1.1 shows the frequency distribution of the unique computations for selected

benchmarks from the SPEC 2000 benchmark suite, using logarithmic frequency ranges.

The second column in Table 5.4.1 shows the specific input sets that were used for results

in this figure. After trying several different frequency range sizes, the logarithmic range

size was used since it produced the most compact results without affecting the content.

0%

20%

40%

60%

80%

100%

gz
ip

vp
r-P

lac
e

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Benchmark

U
n
iq

u
e

C
o
m

p
u
ta

ti
o
n
s

(P
er

c
en

t) <10^9

<10^8

<10^7

<10^6

<10^5

<10^4

<10^3

<10^2

<10^1

Figure 2.2.1.1: Frequency Distribution of Unique Computations per

Benchmark, Global-Level, Normalized

24

In Figure 2.2.1.1, the height of each bar corresponds to the percentage of unique

computations that have a frequency of execution within that frequency range. For

example, if the unique computation 10004+11442, PC = 0x1000 executes 84 times, then

it falls into the < 102 frequency range.

As can be seen in Figure 2.2.1.1, almost 80% of all unique computations have execution

frequencies less than 10 (with the exception of gzip), while over 90% of all unique

computations have execution frequencies less than 100. This result shows that most

unique computations occur relatively infrequently in a program. Consequently, the

performance benefit in reusing most of the unique computations is relatively low since

most of them are only executed a few times.

0%

20%

40%

60%

80%

100%

gz
ip

vp
r-P

lac
e

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Benchmark

U
n
iq

u
e

C
o
m

p
u
ta

ti
o
n
s

(P
er

c
en

t) <10^9

<10^8

<10^7

<10^6

<10^5

<10^4

<10^3

<10^2

<10^1

Figure 2.2.1.2: Percentage of Dynamic Instructions Due to the Unique

Computations in each Frequency Range, Global-Level, Normalized

A unique computation’s frequency of execution corresponds to the number of dynamic

instructions that that unique computation represents. For example, if a unique

computation has a frequency of execution of 2000, 2000 dynamic instructions perform

that specific computation. Similarly so, if three unique computations each have a

25

frequency of 500,000, then those unique computations are executed a total of 1,500,000

times, which corresponds to 1,500,000 dynamic instructions. Figure 2.2.1.2 shows the

percentage of dynamic instructions due to the unique computations in each frequency

range.

In Figure 2.2.1.2, the height of each bar corresponds to the percentage of dynamic

instructions that have their unique computation in that frequency range. For each

frequency range, comparing the heights of the bars in Figures 2.2.1.1 and 2.2.1.2 shows

the relationship between the unique computations and dynamic instructions. For

example, in vpr-Place, more than 99% of all unique computations represent only 3.66%

of all dynamic instructions.

More than 90% of the unique computations account for only 2.29% (mesa) to 29.66%

(bzip2) of the total number of instructions. Another way of stating this result is that a

very large percentage of the unique computations account for a disproportionately small

percentage of the total number of instructions. On the other hand, a program executes a

small set of unique computations a very large number of times. This is one of the key

results of this dissertation.

While a very small percentage of unique computations may account for a very large

percentage of instructions, if a program has billions of unique computations, all of these

high frequency unique computations may not fit into a reasonably sized on-chip table.

Putting it another way, the number of unique computations that can fit into a reasonably

sized on-chip table may not account for a significant percentage of the total instructions.

Therefore, Table 2.2.1.1 shows the percentage of dynamic instructions that are

represented by less than 2048 unique computations.

Table 2.2.1.1 shows that the top 2048 unique computations by frequency of execution,

which account for a very small percentage of the total unique computations (0.002% -

0.162%), represent a significant percentage of the total dynamic instructions (14.68% -

44.49%). The conclusion from these results is that the highest frequency unique

26

computations that can fit into a reasonably sized on-chip table still account for a

significant percentage of the dynamic instructions. In other words, Table 2.2.1.1 shows

that Instruction Precomputation has the potential of significantly improving the

processor’s performance since it targets a large percentage of the program’s instructions.

Table 2.2.1.1: Characteristics of the Unique Computations for the Top 2048

Global-Level Unique Computations, by Frequency

Benchmark % of Unique Computations % of Total Instructions
gzip 0.024 14.68

vpr-Place 0.029 40.57
vpr-Route 0.162 23.44

gcc 0.032 26.25
mesa 0.010 44.49
art 0.010 20.24
mcf 0.005 19.04

equake 0.017 37.87
ammp 0.079 23.93
parser 0.010 22.86
vortex 0.033 25.24
bzip2 0.002 26.83
twolf 0.026 23.54

2.2.2. A Comparison of the Amount of Global and Local Level Redundant

Computation

While the previous section showed that there is a significant amount of redundant

computation available at the global-level, the key question is: how much more redundant

computation is available (and can be exploited) at the global-level as compared to the

local-level? It is important to note that, for the same number of unique computations, the

global-level unique computations will account for a higher percentage of the total

dynamic instruction as compared to the same number of local-level unique computations.

However, since the global-level unique computations may not represent significantly

more instructions, it is worthwhile to determine how many more instructions the highest

frequency global-level unique computations represent before implementing Instruction

Precomputation. As a result, this section compares the global and local level results for

27

the percentage of instructions: 1) In each frequency range and 2) Represented by the top

2048 unique computations.

0%

20%

40%

60%

80%

100%

gz
ip

vp
r-P

lac
e

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Benchmark

U
n
iq

u
e

C
o
m

p
u
ta

ti
o
n
s

(P
er

c
en

t) <10^9

<10^8

<10^7

<10^6

<10^5

<10^4

<10^3

<10^2

<10^1

Figure 2.2.2.1: Frequency Distribution of Unique Computations per

Benchmark, Local-Level, Normalized

0%

20%

40%

60%

80%

100%

gz
ip

vp
r-P

lac
e

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Benchmark

U
n
iq

u
e

C
o
m

p
u
ta

ti
o
n
s

(P
er

c
en

t) <10^9

<10^8

<10^7

<10^6

<10^5

<10^4

<10^3

<10^2

<10^1

Figure 2.2.2.2: Percentage of Dynamic Instructions Due to the Unique

Computations in each Frequency Range, Local-Level, Normalized

28

Figure 2.2.2.1 shows the frequency distribution of the unique computations at the local-

level while Figure 2.2.2.2 shows the percentage of dynamic instructions due to the unique

computations in each frequency range at the local-level.

Since unique computations that differ only by their PC values map to the same unique

computation at the global-level while mapping to different unique computations at the

local-level, there are fewer unique computations in the global-level case. Consequently,

a direct comparison of Figure 2.2.1.1 with Figure 2.2.2.1 does not make sense. However,

for each benchmark, global and local level unique computations can be compared by the

number of instructions that they represent.

A comparison of Figures 2.2.1.2 and 2.2.2.2 shows that global-level unique computations

in the higher frequency ranges represent more dynamic instructions as compared to the

local-level unique computations in the same frequency ranges. This result means that

that a single global-level unique computation represents a larger percentage of

instructions as compared to the corresponding local-level unique computation.

Therefore, using Instruction Precomputation to exploit redundant computations at a

global-level should yield a larger performance benefit.

To summarize the difference between Figures 2.2.1.2 and 2.2.2.2, Table 2.2.2.1 compares

the percentage of instructions that are represented by the 2048 highest frequency unique

computations at both levels. The second and third columns show the percentage of

dynamic instructions that are due to the top 2048 global and local level unique

computations, respectively, while the fourth column is the difference of the second and

third columns.

Table 2.2.2.1 shows that a global-level based Instruction Precomputation mechanism

could reuse an additional 0.01% (mesa) to 12.59% (gcc) of the total number of dynamic

instructions as compared to the local-level. In other words, Table 2.2.2.1 shows that

29

global-level Instruction Precomputation has greater potential for performance

improvement than local-level Instruction Precomputation.

Table 2.2.2.1: Percentage of Instructions Due to the 2048 Highest

Frequency Unique Computations at the Global and Local Levels

Benchmark Global Local Global - Local
gzip 14.68 11.77 2.90

vpr-Place 40.57 29.76 10.82
vpr-Route 23.44 19.88 3.55

gcc 26.25 13.66 12.59
mesa 44.49 44.48 0.01
art 20.24 13.82 6.42
mcf 19.04 13.63 5.41

equake 37.87 35.29 2.58
ammp 23.93 19.12 4.81
parser 22.86 18.59 4.27
vortex 25.24 21.67 3.57
bzip2 26.83 23.54 3.28
twolf 23.54 16.57 6.97

To determine whether the amount of redundant computations are simply the result of the

benchmark itself or of the benchmark’s input set, the same benchmarks were profiled

with another input set. The results from the second input set were very similar to the

results from the first. Therefore, the benchmarks, and not their inputs, are the cause of

redundant computations.

2.3. The Mechanics of Instruction Precomputation

As described briefly in Chapter 1, Instruction Precomputation consists of two main steps:

static profiling and dynamic removal of redundant computations. In the profiling step,

the compiler runs the benchmark with a representative input set to determine the unique

computations with the highest frequencies of execution. Instead of determining only the

unique computations with the highest frequencies of execution, the compiler could also

factor in the each instruction’s latency to determine the unique computations with the

30

highest frequency/latency products (F/LP). The F/LP is simply the unique computation’s

frequency of execution multiplied by its execution latency. Therefore, instructions that

have a single-cycle execution latency have F/LP that are the same as their frequencies of

execution.

Although the compiler uses a “representative” input set to profile the benchmark, the key

question is: Is there a correlation between the set of unique computations and the specific

input set? In other words, will the compiler assemble a very different set of unique

computations for each input set? If so, then Instruction Precomputation cannot be used to

improve the performance of the processor. If not, then the unique computations are a

function of the benchmark, and not the input set, which means that Instruction

Precomputation could significantly improve the processor’s performance.

Table 2.3.1: Number of Unique Computations that are Present in Two Sets

of the 2048 Highest Frequency Unique Computations from Two Different

Input Sets

Benchmark In Common Percentage
gzip 2028 99.02

vpr-Place 527 25.73
vpr-Route 1228 59.96

gcc 1951 95.26
mesa 589 28.76
art 1615 78.86
mcf 1675 81.79

equake 1816 88.67
ammp 1862 90.92
parser 1309 63.92
vortex 1298 63.38
bzip2 1198 58.50
twolf 397 19.38

One approach to determine whether or not the highest frequency unique computations are

a function of the benchmark or input set is to determine the amount of “overlap” between

two sets of high frequency unique computations that were produced by different input

sets. Table 2.3.1 shows the number of unique computations that are common across two

31

sets of the top 2048 highest frequency unique computations. The second column shows

the number of unique computations that are present in both sets while the third column

shows that number as percentage of the total number of unique computations (2048).

Table 2.3.1 shows that with the exceptions of vpr-Place, mesa, and twolf, at least 50% of

unique computations in one set are present in the other set. For gzip, gcc, and ammp,

over 90% of the unique computations in one set are present in the other. While the

percentage is below 50% for vpr-Place, mesa, and twolf, that percentage is affected by

the number of unique computations in each set. The problem is partially due to limiting

the set to N unique computations instead of N different frequencies. For instance, if the

2048th and 2049th unique computations in the same set have the same frequency, only the

2048th unique computation is checked against the other set of unique computations since

the 2049th unique computation is not included in that set. As a result, if several unique

computations have the same frequency of execution, some of them will be included in

one of the two sets, but not the other. In that case, those unique computations will not

appear to be in common between the two sets.

While this reason would seem to be relatively insignificant, the results show that this

reason is very significant for a few benchmarks. For example, in mesa and art, 666 and

8416 unique computations, respectively, have the same frequency of execution as the

2048th highest frequency unique computation. This result shows that, for these two

benchmarks, the number of unique computations that are present in two input sets is

deceptively low.

However, the key conclusion from Table 2.3.1 is that for most benchmarks, a significant

percentage of the unique computations are present in both sets. Consequently, the

conclusion is that the highest frequency unique computations are primarily a function of

the benchmark and less a function of the specific input set.

After the compiler determines the set of the highest frequency unique computations, they

are compiled into the program binary. Therefore, each set is unique only to that program.

32

The second step for Instruction Precomputation is the removal of redundant computations

at run-time. Before the program begins execution, the processor initializes the

Precomputation Table (PT) with the unique computations in the program binary. Then,

as the program executes, for each instruction, the PT is checked to see if there is a match

between the opcodes and input operands of the PT entries and the opcode and input

operands of the current instruction. If a match is found, then the Instruction

Precomputation hardware forwards the value in the output field of the matching PT entry

to the instruction. As a result, since that instruction does not need to continue through the

remaining stages of the pipeline, it can be removed from the pipeline to await in-order

commit. If a match is not found, then the instruction continues through the pipeline and

executes as normal.

Figure 2.3.1 shows how the PT is integrated into the processor’s pipeline.

Figure 2.3.1: Operation of a Superscalar Pipeline with Instruction

Precomputation

During the decode and issue stages, the opcode and input operands for each dynamic

instruction are sent to the PT, when available. The Instruction Precomputation hardware

then determines if there is a match between the current opcode and input operands with

Fetch Stage

Decode Stage

Issue Stage

Execute Stage

Writeback Stage

Instruction

Precomputation

Table and Hardware

33

the unique computations in the PT. If a match is found, the Instruction Precomputation

hardware sends the output value for that instruction to the writeback stage, which

commits that value when the instruction is retired.

It is important to note that, unlike value reuse, Instruction Precomputation never updates

the PT whenever the matching unique computation is not found. Rather, the PT is

initialized just before the program starts executing.

Since instructions are removed from the pipeline only if a matching computation is found

in the PT, Instruction Precomputation is a non-speculative optimization, i.e. the output

value that is forwarded from the PT to the instruction is the correct and final value. The

advantage of non-speculative optimizations is that they do not need hardware to check

the correctness of their speculation.

2.3.1. How it Improves Performance

Incorporating Instruction Precomputation into a superscalar processor improves the

processor’s performance in two ways. First, forwarding the output value of the

instruction early in the pipeline reduces the effective latency of the instruction (as

opposed to normal execution). This reduces the “CPI” term in Equation 1.3.1.

Instructions that are dependent on those redundant computations can also begin executing

earlier (as compared to when Instruction Precomputation is not used). Second,

dynamically removing the instruction from the pipeline decreases the number of resource

conflicts in the later stages of the pipeline. Decreasing the number of resource conflicts

makes more issue slots available for other instructions, allows other instructions to

execute sooner on a functional unit, decreases the number of instructions that are on a

bus, etc. Consequently, since fewer resource conflicts means that instructions can begin

and finish execution faster, reducing the number of resource conflicts reduces the CPI

term.

34

2.4. A Comparison of Instruction Precomputation and Value Reuse

Overall, Instruction Precomputation and value reuse are similar approaches. Both

methods dynamically remove instructions that are redundant computations from the

pipeline after forwarding the correct output value to that instruction. Both methods

define a redundant computation to be one that is currently in the PT or VRT.

While these two approaches are generally similar, the key difference between the two is

how a redundant computation gets into the PT or VRT. In Instruction Precomputation,

only the highest frequency redundant computations – which are determined by compiler

profiling – are put into the PT. Since it is likely that, for that particular input set, the

highest frequency unique computations are already in the PT, there is no need for

dynamic replacement.

On the other hand, in value reuse, if a unique computation is not found in the VRT, then

it is added to the VRT. Therefore, even if a computation has not been redundant or will

not be redundant, is still is added to the VRT, even if it replaces a high frequency

redundant computation.

The one advantage that value reuse could have over Instruction Precomputation is faster

table access, depending on its implementation. Instead of comparing the current

instruction’s opcode and input operands against every unique computation in the VRT,

using the current instruction’s PC as an index into the VRT can reduce the VRT access

time by quickly selecting the matching table entry (although the input operands still need

to be compared). As a result, not only does this approach require fewer comparisons, it

also removes the need to compare opcodes since there can only be one opcode per PC.

However, the depth of this advantage is difficult to quantify since it depends on the size

of both tables, the exact implementation of both mechanisms, the processor’s

architecture, and the processor’s clock frequency.

35

Chapter 3

Trivial Computations

As described in Chapter 1, adding hardware to simplify and eliminate trivial

computations can improve the processor’s performance. This chapter describes the

problem that the Simplification and Elimination of Trivial Computations attempts to

solve, the program characteristic that it exploits, how it operates, and the hardware that is

needed.

3.1. Definition of Trivial Computations and How to Exploit Them

A significant percentage of a program’s total instruction count is due to trivial

computations, which are the result of the way programs are written and compiled. A

trivial computation is an instruction whose output value can be determined without

having to perform the specified computation by either converting the operation to a less

complex one or by determining the result immediately based on the value of one or both

of the inputs. An example of the former is a multiply operation where one of the input

operands has a value of two. In this case, the multiply instruction can be converted to a

shift-left instruction. Therefore, instead of executing the original multiply instruction

36

with a multiply unit, that instruction can be simplified to a shift-left instruction which

can then execute on a general integer ALU unit.

Converting the multiply instruction to a shift instruction decreases the execution latency

of the instruction. Instead of computing the output value by using an integer multiply

unit that requires multiple clock cycles, the same result can be computed by using a

functional unit that requires only one or two clock cycles. Furthermore, since there

usually are two to three times more integer ALU functional units as compared to integer

multiply functional units in modern superscalar processors, simplifying the trivial

computation also reduces the number of resource conflicts.

An example of the latter type is an add instruction where one of the input operands is

zero. In this case, the result of the instruction is the value of the other input operand.

Therefore, since the value of the output is equal to the value of the non-zero input, no

computation needs to be performed. Since one of the inputs is trivial (zero), this

computation can be eliminated.

Detecting a trivial input and then eliminating that computation improves the processor’s

performance in three ways. First of all, dynamically eliminating those computations

obviates the need to use a functional unit, thus reducing the number of resource conflicts.

Second, eliminating, instead of executing, trivial computations reduces the execution

latency of those instructions. Finally, and most importantly, some trivial computations

can be eliminated before both input operand values are available. As a result, not only is

the result of that instruction non-speculative, it is also available earlier than is normally

possible since the result is available before the value of both input operands are available.

For example, since the output value of the trivial computation X*0 is zero, regardless of

what the value of X is, by using extra hardware to eliminate that trivial computation, the

result of that computation will be available before the value of X is available. To

illustrate the potential performance improvement, assume that the value of X is available

two cycles after the zero input operand is available, that multiply instructions have a 10

37

cycle execution latency, and that multiply instruction has to pass through another 4

pipeline stages before it is executed. As a result, it takes 16 (2+10+4) additional cycles to

finish execute this instruction normally after the zero input operand value is available,

which is 15 more cycles than it would take to eliminate this trivial computation. Even if

the multiply instruction takes only a single cycle, eliminating that trivial computations

saves at least 6 cycles as compared to normal execution.

It is important to note that dynamically simplifying and eliminating trivial computations

is a non-speculative optimization.

Finally, while it seems as though an optimizing compiler should be able to remove many

of these trivial computations, it is unable to do so unless the value of the input operands is

known at compile time. Furthermore, the compiler may use trivial computations, such as

0+0, for initialization purposes. Consequently, since the compiler is unable to remove

these trivial computations and also since the compiler deliberately introduces additional

trivial computations into the program, it is left to the hardware to simplify and eliminate

these trivial computations at run-time.

3.2. The Amount of Trivial Computations

While the previous sub-section first defined what trivial computations are, how they

could be exploited to improve the processor’s performance by simplifying and

eliminating them, and how they actually go about improving the processor’s

performance, that description is somewhat useless if trivial computations are not

prevalent in typical programs. The goal of this sub-section is to determine percentage of

dynamic instructions that are trivial computations.

Table 3.2.1 shows the types of computations that are defined as trivial in this dissertation.

The first column shows the type of operation while the second column shows how the

38

result is normally computed. The third and fourth columns show which trivial

computations can be eliminated and simplified, respectively.

Table 3.2.1: List of Trivial Computations.

Operation Normal Can be Eliminated Can be Simplified
Add X+Y X,Y=0

Subtract X–Y Y=0; X=Y
Multiply X*Y X,Y=0 X,Y=Power of 2
Divide X÷Y X=0; X=Y Y=Power of 2
AND X&Y X,Y={0,0xffffffff}; X=Y

OR, XOR X|Y, X⊕Y X,Y={0,0xffffffff}; X=Y
Logical Shift X<<Y, X>>Y X,Y = 0

Arithmetic Shift X<<Y, X>>Y X={0,0xffffffff}; Y=0
Absolute Value |X| X={0, Positive}

Square Root X X=0 X=Even Power of 2

The trivial computations that can be eliminated can also be divided into two groups, those

that can benefit from non-speculative, early execution and those that do not. Table 3.2.2

lists the trivial computations in the former category.

Table 3.2.2: Trivial Computations that Benefit from Non-Speculative, Early

Execution

Operation Normal Early Execution Candidates
Add X+Y

Subtract X–Y
Multiply X*Y X,Y=0
Divide X÷Y X=0
AND X&Y X,Y=0
OR X|Y X,Y=0xffffffff

Logical Shift X<<Y, X>>Y
Arithmetic Shift X<<Y, X>>Y X={0,0xffffffff}
Absolute Value |X|

Square Root X

For those trivial computations in Table 3.2.2, when the specific input is found to be

trivial, not only is the computation also trivial, but the result is either 0 or 0xffffffff. For

example, the computation X & 0 always produces an output value of 0, regardless of the

39

value of X. Similarly so, X | 0xffffffff is always 0xffffffff, again, regardless of the value

of X. The trivial computations not shown in Table 3.2.2 have to wait for both input

operands before the computation is known to be trivial or before the result is known.

It is obvious as to why most of the computations in Table 3.2.1 are trivial with the

possible exceptions of XOR and square roots for an even power of two. For XOR, there

are three possible trivial inputs: 0, 0xffffffff, and X=Y. For X ⊕ 0, the output value is X.

For X ⊕ 0xfffffff, the output value is ~X (complement of X). Finally, when X = Y, the

output value of X ⊕ Y is 0.

For a square root, if the value of X is an even power of two (e.g. 4, 16, 64), then the

result can be computed by halving the value in the exponent field. As a result, the

exponent needs only to be shifted to the right by one bit. For example, the exponent for

16 is 0100 (4). By applying this simplification, 0100 is right-shifted by one to produce

0010 (2). Using this new exponent, the new value of this number is 4 (1*22) which is the

square root of 16.

Finally, it is important to note that the definitions for add, sub, multiply, and divide trivial

computations in Table 3.2.1 are not limited only to integer operations, but are also

equally applicable to floating-point operations. However, due to differences in how the

number is represented (e.g. two’s complement versus IEEE floating-point notation), how

a floating-point computation is simplified and eliminated may differ as compared to its

integer counterpart.

Given the list of the trivial computations in Table 3.2.1, Figure 3.2.1 shows the

percentage of trivial computations in selected benchmarks from the SPEC 2000 and

MediaBench [Lee97] benchmark suites for each instruction type and for each benchmark

suite. The second column in Table 5.4.1 shows the specific SPEC input set that was used

for results in this figure while the second column of Table 5.4.2 shows the specific

MediaBench input set. The benchmarks in the MediaBench benchmark suite represent

multimedia application programs such as compression, encryption, and encoding.

40

0

10

20

30

40

50

60

70

80

90

100

AD
D

SU
B

M
ULT DIV

AN
D

O
R

XO
R

SLL
SRL

SR
A

FAD
D

FSU
B

FM
UL

FD
IV

FABS

FS
Q
RT

Tot
al

Instruction Type

T
ri
v
ia

l I
n
st

ru
ct

io
n
s
 (
P
e
rc

en
t)

SPEC

MB

Figure 3.2.1: Percentage of Trivial Computations per Instruction Type and

per Total Number of Dynamic Instructions for the SPEC and MediaBench

Benchmarks

Overall, these results in Figure 3.2.1 show that trivial computations account for 12.24%

and 5.73% of the total instructions in these SPEC and MediaBench benchmarks,

respectively. Although some multimedia benchmarks may have a significant amount of

trivial computations, the benchmarks that were selected from the MediaBench benchmark

suite for this study clearly do not.

Figure 3.2.1 also shows that almost all instruction types have a significant percentage of

trivial computations. However, a high percentage does not necessarily mean that those

instructions will have a significant impact on the program’s overall execution time since

they could account for a very small percentage of the total executed instructions. For

example, 100% of the absolute value instructions (FABS) are trivial, but they account for

only 0.05% of the total instructions executed.

To determine whether the trivial computations are a result of the benchmark itself, or of

the benchmark’s input set, the same benchmarks were profiled with another input set.

41

The results from the second input set were very similar to the results from the first, with

the exception that with the other input set, the MediaBench benchmarks had a higher

percentage of trivial computations (7.43%). This result indicates that trivial

computations are primarily due to the benchmark programs themselves and not due to the

specific values of their inputs. However, for the MediaBench benchmarks, the input set

has a larger effect on the amount of trivial computation than it does for the SPEC

benchmarks.

3.3. The Mechanics of Trivial Computation Simplification and

Elimination

The first step to simplify or eliminate a trivial computation is to determine if one of the

input operands (X, Y) is trivial (0, 0xffffffff, positive, a power of two, or an even power

of two) or if the two input operands are equal to each other. However, since different

instruction types have different sets of trivial inputs, the opcode is needed to determine

the possible set of trivial inputs. To determine whether or not one or more of the input

values are trivial, comparators are used to compare each input operand against the set of

candidate trivial input values for that operation. Since the input operand values may

arrive in different clock cycles, the comparators need to check the input operand values

as they arrive. Since it is possible for an instruction to be both simplified and eliminated,

as is the case for 2*0, combinational logic is needed to determine if that is the case and

then to favor eliminating the computation. Figure 3.3.1 shows the hardware that is

necessary to implement this logic and how this logic fits in the processor’s pipeline.

In this figure, the trivial computation hardware is placed between the reorder buffer,

which stores the results of the decode stage, and the issue stage. The input operand

values, X and Y, for each instruction are sent to the six trivial operand comparators. The

comparators check if the input operand values are equal to zero (= 0), are all ones (All

1’s), are equal to each other (X = Y), are positive (> 0), are a power of two (log2), or are

an even power of two (E log2). The inputs to the trivial computation logic are the results

42

of each comparison and the opcode for that instruction. The trivial computation logic

uses those inputs to first determine if the current instruction is a trivial computation. If

the current instruction is a trivial computation that can be eliminated, the output value for

that instruction is sent back to the reorder buffer using the “Result” bus. If the current

instruction is a trivial computation that can be simplified, the trivial computation logic

generates the re-coded opcode and input operand values and sends them to the issue

logic. However, if the trivial computation can be eliminated and simplified, the trivial

computation logic will favor the eliminate option and simply generate the output value.

Figure 3.3.1: Trivial Computation Hardware and Its Processor Interface

After determining if the instruction is a trivial computation, then second step is to either

simplify the computation or eliminate it. However, somewhat ironically, simplifying a

computation is not a simple process. Simplifying an integer multiply or divide

instruction means that the instruction needs to be converted to a shift-left (multiply) or

shift-right (divide) instruction. Additionally, the trivial input operand (i.e. the one that is

a power of two) needs to be converted into the appropriate shift amount. The non-trivial

input operand needs to be shifted by the same amount as the bit-number of the only bit

Reorder Buffer

> 0 E log2= 0 = 0 All 1’sAll 1’s X = Y log2 log2

 Opcode

Y

X

Yes/No

Trivial Computation Logic

Result

New Opcode New X New Y

Issue Logic

Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No Yes/NoYes/No

43

that is “1” in the trivial input. For instance, assuming that the computation to be

simplified is X/4, the bit-pattern for 4 is: 0000 … 0000 0100. Therefore, the only bit that

is “1” in that bit-pattern is in bit position “2”. Consequently, X needs to be shifted to the

right by 2.

The process of simplifying floating-point multiply and divide instructions is similar with

one key exception. Instead of shifting the instruction to the left or right, the shift amount

is added to or subtracted from the exponent of the non-trivial input operand. As a result,

instead of using a shifter, the simplified instruction should use an adder or subtractor.

Since the exponent field is confined to a predetermined field of bits, an integer adder or

subtractor can be used to add or subtract the shift amount.

As explained above, to simplify a square root computation that is trivial (an even power

of two), only the exponent field of the input needs to be shifted to the right by one. As a

result, since the format of the number is not a problem, an integer shifter can be used to

simplify the computation. Alternatively, dedicated shift-right-by-one can be

implemented next to the trivial input detection logic so the simplified instruction does not

need to go through the pipeline.

Finally, after the instruction has been simplified by re-coding it, it can be sent to the

functional units to be executed. After the simplified instruction finished executing, the

result for that instruction is written to the register file and the instruction is committed,

just like any other instruction.

By comparison, eliminating a trivial computation is a much simpler task than simplifying

one. The four output values of trivial computations that can be eliminated are 0, 1,

0xffffffff, and X (assuming that Y is the trivial input). It is important to notice that, for

the first three output values, to eliminate that trivial computation, after detecting that that

instruction is a trivial computation, simple combinational logic can be used to set the

output to the correct value. In the case where the output value is equal to X,

combinational logic sets the output to the value of X when the value of X arrives. Then,

44

for all four cases, after the output value is set, the instruction needs only to write its

output value to the register file and be committed.

Finally, in the cases of trivial computation where non-speculative, early execution

applies, the output value is set immediately, whether or not the non-trivial input operand

is available. And if the value of the non-trivial input operand was not available when the

output value was set, then when it is arrives, it is ignored since it does not change the

output value.

3.4. Hardware Cost to Simplify and Eliminate Trivial Computations

The minimum hardware cost of exploiting trivial computations, using this dissertation’s

definitions of trivial computations, are the nine comparators shown in Figure 3.3.1, the

trivial computation logic, a few multiplexors, a few tri-state gates, and a few extra busses.

However, the final hardware cost depends on the base processor architecture and how

aggressively the architect wants to exploit trivial computations. The maximum cost

corresponds to when the trivial computation hardware shown in Figure 3.3.1 is replicated

for each reorder buffer entry and for each reservation station entry (the input buffer for

the functional units) while the minimum cost corresponds to when all reorder buffer

entries share the same set of comparators and the same trivial computation logic.

Specific implementations in between either extreme result in hardware costs in between

the two extremes.

45

Chapter 4

Simulation Methodology

As described in Chapter 1, without a rigorous simulation methodology, the computer

architect may make false conclusions or may not glean the maximum amount of

information from the simulation results. Therefore, to improve the simulation

methodology in computer architecture research, this dissertation uses a fractional

multifactorial design-of-experiments, the Plackett and Burman design [Plackett46], as the

foundation to improve specific stages of the simulation process. More specifically, the

remainder of this chapter describes how the results of the Plackett and Burman design can

be used to choose processor parameter values and benchmarks, and also how those results

can be used to analyze the effect of a processor enhancement.

4.1. An Overview of Simulation Methodology

The most important tool in processor design and computer architecture research is the

processor simulator. Using a simulator reduces the cost and time of a project by allowing

the architect to quickly evaluate the performance of different processor configurations

instead of fabricating a new processor for each configuration, a process that may take

several weeks or months and is extraordinarily expensive. Additionally, a simulator is

46

much more flexible than fabricating the processor since it can somewhat accurately

determine the expected performance of a processor enhancement without having to

undergo all the necessary circuit-level design steps. Note that the term “processor

enhancement” includes both microarchitectural and compiler enhancements.

Since simulators are more cost-effective, flexible, and efficient than fabricating a

processor, computer architects use their results to guide design decisions, determine what

points to explore in the design space, and to quantify the efficacy of a processor

enhancement. Consequently, since misleading simulation results can severely affect the

final design of the processor or lead to erroneous conclusions, the accuracy of the

simulator’s results is extremely important. Therefore, to minimize the amount of error in

the simulation results, computer architects need to do two things. First, they should try to

minimize the amount of error inherent to the simulator (as compared to a hardware

version of the processor the simulator models). Second, they should try to reduce the

amount of “error” that the user introduces when running simulations. A user may

introduce additional error into the simulation results by choosing a poor set of processor

parameters or benchmarks that over or under inflate the processor’s performance, or

power consumption, reliability, etc. While current research also focuses on decreasing

the processor’s power consumption and improving its reliability, for brevity, the

remainder of this section assumes that the computer architect is only trying to improve

the processor’s performance. However, the techniques that are described in this chapter

are equally applicable to power consumption reduction and reliability improvement.

Furthermore, since the simulation results are used to make design decisions, it is also

important to glean the maximum amount of information from each set of simulation

results so that accurate conclusions can be drawn. For example, while the speedup metric

measures the overall performance impact of a processor enhancement, what it does not

reveal is “how” the processor enhancement got that final result. For instance, while the

processor enhancement may relieve one bottleneck (such as the cache miss rate), the

same enhancement may exacerbate another (such as the amount of memory traffic),

which then could be the performance-limiting factor. Consequently, the speedup

47

represents the net effect that the processor enhancement has on these two bottlenecks.

Higher speedups may be possible by redesigning the enhancement such that the second

bottleneck is less of a limiting factor.

In spite of this dependence on simulators, relatively little research has focused on

decreasing the amount of error in simulation results by improving the accuracy of

simulators and by improving simulation methodology. In fact, current simulation

methodology is, at best, ad-hoc. Therefore, to decrease the amount of error in the

simulation results and also to improve the overall quality of the simulation methodology,

this dissertation introduces rigorous, statistically-based simulation methodology.

4.1.1. Principal Steps of the Simulation Process

In computer architecture research, the simulation process is the sequence of steps that

architects must perform to run their simulations and to analyze their simulation results.

Most architects start with a publicly available simulator, such as SimpleScalar, and then

add their own code to the simulator to model their enhancement. This dissertation

divides the simulation process into six major steps. They are:

1) Simulator Design and Validation

2) Processor Enhancement Implementation and Verification

3) Processor Parameter Selection

4) Benchmark and Input Set Selection

5) Simulation

6) Analysis of an Enhancement’s Effect

In each of the following paragraphs, a short description of each step is given along with a

short description of the some of the potential errors that the user could make.

In the first step, the simulator is designed, implemented, and verified. The most

important design decision when implementing a simulator is how much detail to

48

incorporate into the simulator. For example, if the simulator does not fully model the

memory traffic within the memory hierarchy, the performance of the simulated processor

will be higher-than-should-be-expected since the effect of bus traffic and other resource

limited hazards are removed. While adding more detail into the simulator improves its

accuracy, it comes with the price of a slower simulation speed, which results in longer

simulation times. In summary, the goal of this step is to produce an accurate simulator

that fully models all of the key components, i.e. the components that have a significant

effect on the simulated performance.

In the second step of the simulation process, computer architects implement their

processor enhancement into the simulator or into the compiler. In the former case, the

processor enhancement is a hardware-based solution while the latter is software-based.

After implementing the processor enhancement, it is very important for the architect to

verify if their implementation functions correctly and if it is sufficiently detailed to

accurately model the enhancement. In summary, the goal of this step is to create an

accurate representation of the processor enhancement.

In the third step of the simulation process, the computer architect chooses values for the

user-configurable processor parameters. Typical processor parameters include cache

size, associativity, and block size; reorder buffer size; branch predictor type and size; and

the number and type of each functional unit. In this dissertation, the generic term

“processor parameters” includes parameters in the processor core and key memory

parameters. Choosing the set of values for the processor parameters is important since a

poorly chosen set may result in creating artificial bottlenecks or minimizing real

bottlenecks that are not present in commercial processors.

The fourth step in the simulation process is similar to the third. In this step, the computer

architect chooses a sub-set of benchmarks from the benchmark suite and a set of inputs

for those benchmarks. Since processor enhancements either aim to improve the

processor’s performance for a wide range of programs (i.e. general-purpose computing)

or for a specific set of programs and since the purpose of simulations is to quantify the

49

effect that a processor enhancement has, the computer architect needs to carefully choose

a sub-set of benchmarks and inputs that is appropriate. After choosing the benchmarks,

the architect should compile them with a state-of-the-art compiler (with the appropriate

compilation options), if the simulator models a state-of-the-art processor. Choosing an

unrepresentative set of benchmarks and inputs can under or overstate the expected

performance of the processor which, in effect, introduces additional “error” into the

simulation process. In summary, the goal of this step is to choose an appropriate set of

benchmarks and inputs that will yield an accurate estimate of the expected performance.

Poorly choosing a set of benchmarks and inputs could inadvertently introduce additional

error into the simulation results.

In the fifth step, the computer architect performs the simulations. Although the setup

phase of the simulation process is concluded with step four, decisions on how actually to

perform the simulation still need to be made. For instance, to reduce the simulation time

even more, the computer architect may wish to employ one of two options. First, to

reduce the simulation time of the initialization phase of the program, which is less

interesting than the remainder of the program, the computer architect may decide to “fast-

forward” (functional execution without any timing information) through most of the

initialization phase. The upside of this approach is that the architect can test the

performance of the enhancement on a more interesting part of the program while limiting

the total simulation time. The downside is that the performance results may be

misleading since they do not account for the execution time of the initialization section.

In the other option, the simulation is terminated after a certain user-chosen number of

instructions. The upside of this approach is the assumption that after that number of

instructions, the processor has already executed some or all of the most interesting

aspects of the program. Therefore, simulating the program to the completion may not

yield any additional information about what effect the enhancement has on the processor.

However, the downside is that skipping parts of the program may introduce some amount

of error into the simulation results.

50

In all of the first five steps of the simulation process, the computer architect may fall into

several pitfalls that will affect the accuracy of the simulation results. And since the

architect makes conclusions based on the simulation results, inaccurate simulation results

may lead to inaccurate conclusions. However, since the magnitude and net effect of each

of the errors is currently unknown, it is impossible to say whether or not the simulation

results even produce an indicative trend. Consequently, it is very important to decrease

the amount of error in some or all of these steps.

The sixth and final step of the simulation process is analyzing the simulation results. One

goal of this step is to thoroughly understand the effect that the enhancement has on the

processor and how the enhancement interacts with the processor. Understanding these

two effects are central to understanding what limits the performance improvement of the

enhancement. To accomplish that goal, the computer architect should look beyond

single-valued metrics, such as the speedup or the cache miss rate, to multi-valued metrics,

such as the distribution of the performance bottlenecks, which form a more complete

picture of the enhancement’s effect.

4.1.2. Focus of this Dissertation

This dissertation focuses on improving the simulation methodology of the third step,

processor parameter selection; the fourth step, benchmark selection; and the last step, the

analysis of an enhancement’s effect. This dissertation excludes the first step (simulator

design and validation) for two reasons. First, since most computer architects do not

implement their own simulator, but rather use publicly available simulators as their base

simulator, focusing on this step benefits only a small number of computer architects.

Second, as will be described in Chapter 7, there have been a few papers that have focused

on improving the accuracy of simulators. For similar reasons, this dissertation does not

focus on the second (processor enhancement implementation and verification) and fifth

(simulation) steps.

51

4.2. Fractional Multifactorial Design of Experiments

As described in Chapter 1, in a sensitivity analysis, the values of some parameters are

varied while the values of the remaining parameters are fixed. Then, by measuring the

change in the output value in response to changes in the values of the variable

parameters, a computer architect can determine the effect that each variable parameter, or

combination of parameters, has on the output.

Multifactorial designs are statistical methods that allow the user to determine the specific

effect that a variable parameter has on the output [Montgomery91]. However, one key

difference between a multifactorial design, such as the analysis of variance (ANOVA),

and a sensitivity analysis is the level of detail that can be extracted from each. In

ANOVA, the user can determine the percentage effect that each parameter and

interaction (combination of parameters) have on the change in the output value. For

example, the user may calculate that parameter A accounts for 25% of the total amount of

change (variation) in the output while parameter B accounts for 70%. In this particular

example, interaction AB accounts for the remaining 5%. On the other hand, a sensitivity

analysis may only reveal that parameter B has more of an effect on the output than does

parameter A and that their interaction has even less. In other words, the conclusions that

are derived from a sensitivity analysis are inherently more limited while the multifactorial

design conclusions are more analytical.

While the outputs of a multifactorial design, such as ANOVA, may be more detailed than

the outputs of a sensitivity analysis, using the same multifactorial design for all situations

it not necessarily the best solution. The basic difference between multifactorial designs is

the trade-off between the level of detail and the required number of simulations. In

general, the multifactorial designs that yield the highest level of detail also require the

largest number of simulations. While having a higher level of detail gives the user more

information from which to form a conclusion, the required simulation time to produce

that level of detail may be prohibitively high. (The total simulation time is equal to the

average time per simulation multiplied by the total number of simulations. The total

52

number of simulations depends on the number of variables, the number of values per

variable, and the specific multifactorial design.) The appropriate multifactorial design is

the one that exceeds the minimum level of detail needed while having a tractable amount

of simulation time.

In this dissertation, to improve the simulation methodology in computer architecture

research, the minimum level of detail that is required is the quantitative effect of each

individual parameter and the quantitative effect of all the significant interactions. (There

are 41 individual, user-configurable parameters in the SimpleScalar simulator that is used

in this dissertation.) The maximum amount of simulation time is limited by the total

number of processors that can be used to run the simulations and their availability.

4.2.1. Comparison of Statistical Designs

To determine the effect of the individual parameters and the most significant interactions,

three different multifactorial designs were considered for use: the “one-at-a-time” design,

the ANOVA design, and the Plackett and Burman design. For reasons that will be

explained below, the ANOVA design is an example of a full multifactorial design while

the Plackett and Burman design is an example of a fractional multifactorial design. Each

of the following three sub-sections describes the mechanics of each design, as well as its

advantages and disadvantages.

4.2.1.1. One-at-a-Time Design

In the one-at-a-time experimental design, the value of one parameter is varied while the

other parameters are set to constant values. For example, if each parameter can take one

of two values, the parameter that is being varied is set to its “high” value while all of the

other parameters are set to their respective “low” values. The high and low values for

each parameter represent the range of values that that parameter can take. Then, the user

can determine the effect of each parameter by comparing the output value when each

parameter is at its high value, while the other parameters are at their low value, with the

53

configuration where all parameters are at their low values. The latter case is the baseline

case. Consequently, for N parameters and for two values for each parameter, this design

requires only N+1 simulations. This design requires N simulations to vary each

parameter to its high value and one simulation for the baseline case. (If each parameter

can be set to X different values, these designs require X*N+1 simulations.)

The advantage of this design is that it requires the absolute minimum number of

simulations. As a result, the amount of time required to execute this design and

determine the effect of each parameter is relatively low.

However, these designs should be avoided because they are vulnerable to masking

important effects that exist due to interactions between the parameters. Suppose the

interaction between parameters A and B is very significant, i.e. that interaction has a

large effect on the output value. However, since the effect of interaction AB cannot be

quantified with this approach, whatever effect that interaction has will appear to be the

effect of a single parameter. Additionally, a constant parameter can be set to such an

extreme value that it dominates the results and overshadows the effect of the parameters

under test. For instance, setting the low value of a buffer’s size to be too small can cause

this unit to become the performance bottleneck, thereby masking the effect due to another

parameter.

Overall, although the number of simulations required for this design is very low, this

advantage is more than offset by the low quality of the results. Consequently, since it is

difficult to have confidence in these results, this option was discarded in favor of one of

the following two options.

4.2.1.2. Full Multifactorial Design: Analysis of Variance (ANOVA) Design

To determine the effect of all single parameters and interactions, a full multifactorial

design varies the parameters to account for every possible configuration. For example,

for a design with three parameters that can take two possible values, the values of

54

parameters A, B, and C will be: LLL, LLH, LHL, LHH, HLL, HLH, HHL, and HHH,

where H and L represent the high and low values, respectively, for each parameter.

This design has the advantage of being able to precisely quantify the effect that any

parameter or interaction has on the variation in the output. From a statistical point-of-

view, a parameter that has a large effect on the output value will account for a large

percentage of the total variation in the output. As a result, by computing the percentage

effect that each parameter and interaction has on the variation in the output, the user can

determine: 1) Which parameters and interactions are the most significant (have the most

effect on the output value) and 2) The relative important of parameters and interactions

with respect to each other.

However, the disadvantage of this design is that it is extremely computationally

expensive. For example, assume that a computer architect wants to determine the percent

effect that all user-configurable parameters and their interactions have on the processor’s

performance. Also assume that the architect is using a simulator that has N user-

configurable parameters and decides to set those N parameters to b different values.

Finally, assume also that the each simulation takes an average of X hours. The total

amount of time to simulation all of these test cases is X*bN hours.

For computer architects using the superscalar processor simulator in the SimpleScalar

tool suite and 10 benchmarks from the SPEC 2000 benchmark suite, N=41 and X=12.

Simulating all 2.2 trillion test cases requires a total simulation time of 10*12*241 hours,

or 30.1 billion years! (This is three times longer than the expected lifetime of the sun.)

While these numbers are somewhat facetious, the point of this example is that, for

simulation-based computer architecture research, it is virtually impossible to simulate all

the test cases for values of N larger than 15. Consequently, the utility of full

multifactorial designs is limited to small values of N.

55

One potential solution to this problem is to fix the values of some parameters while

performing the full multifactorial design for the remaining parameters. Ideally, this

compromise drastically reduces the simulation time while still determining the effect of

the most important parameters. For example, the computer architect using SimpleScalar

may choose to fix the values of the 30 least important parameters while varying the

values of the 11 most important. However, the problem with this approach is that the

values of the constant parameters may have a significant effect on the results. Since

interactions between constant and variable parameters may have a significant, but

unknown effect, on the results, the user cannot have a high level of confidence in the

results of this approach.

Overall, although full multifactorial designs give the most information about the effects

of parameters and interactions, this advantage is more than offset by the computational

cost. Consequently, since this cost was too high given the available computing resources,

this option was discarded in favor of the third option, fractional multifactorial designs.

4.2.1.3. Fractional Multifactorial Design: Plackett and Burman Design

In a fractional multifactorial design, all N parameters are varied simultaneously over

approximately N+1 simulations, which is the logically minimal number of simulations

required to estimate the effect of each of the N parameters. However, unlike the one-at-

a-time design where only one parameter is at its high value, in a fraction multifactorial

design, half of the values are at their high value. Furthermore, each parameter is set to its

high value for half of the simulations.

One well-established fractional multifactorial design is the Plackett and Burman design

[Plackett46]. The base Plackett and Burman design requires X simulations, where X is

the next multiple of four greater than N. For example, if N=3, then X=4. However, if

N=16, then X=20. An improvement on the base Plackett and Burman design is the

Plackett and Burman design with foldover [Montgomery91]. This doubles the number of

required simulations to 2*X.

56

A Plackett and Burman design with foldover can accurately quantify the effect that single

parameters and selected, two-parameter interactions have on the output variable.

Therefore, they cannot quantify the effect of interactions that are composed of three or

more parameters. While this may appear to be major problem for computer architects, it

is not. The results in [Yi02-1] showed that the most important interactions are due to

dominant parameters. Therefore, if the effect of an interaction is significant, it is

composed of at least one dominant parameter.

Additionally, [Yi02-1] shows that almost all of the most significant interactions are two

parameter interactions. As a result, since a Plackett and Burman design can quantify the

effects of all single parameters and all two parameter interactions, and since all other

significant interactions are the result of significant single parameters, the Plackett and

Burman design is able to capture all of the significant effects. Consequently, a computer

architect can use a Plackett and Burman design to characterize the effect that processor

parameters have on the performance with a high degree of confidence.

4.2.2. Mechanics of Plackett and Burman Designs

For a Plackett and Burman design, the value of each parameter in each configuration, is

given by the Plackett and Burman design matrix. For most values of X, the Plackett and

Burman design matrix is simple to construct. Each row of the design matrix specifies if

the parameter is set to its high or low value for that configuration. For a Plackett and

Burman design with foldover, there are 2*X configurations, or rows. (Only X

configurations are needed when using a Plackett and Burman design without foldover.)

Each column specifies the values that a parameter is set to across all configurations. For

a Plackett and Burman design, with or without foldover, there are X-1 columns. When

there are more columns than parameters (i.e. N < X-1), then the extra columns are simply

“dummy parameters” and have no effect on the simulation results.

57

For most values of X, the first row of the design matrix is given in [Plackett46]. The

value of each entry in the design matrix is either “+1” or “-1” where +1 corresponds to

the parameter’s high value and -1 corresponds to its low value. The next X-2 rows are

formed by performing a circular right shift on the preceding row. Finally, row X, the last

row of the design matrix (without foldover), is a row of minus ones, which corresponds

to the base case. The gray-shaded portion of Table 4.2.2.1, Rows 1-8, illustrates the

construction of the Plackett and Burman design matrix for X=8, a design appropriate for

investigating four to seven parameters.

When using foldover, X additional rows are added to the matrix. The signs of the values

in each of these additional rows are the opposite of the corresponding entries in the

original matrix. The corresponding row for each of these foldover rows is X rows above

that row. Consequently, the last row, Row 2*X, is a row of plus ones. Table 4.2.2.1

shows the complete Plackett and Burman design matrix with foldover. Note that rows 9-

16 specifically show the additional foldover rows.

Table 4.2.2.1: Plackett and Burman Design Matrix with Foldover (X=8)

A B C D E F G Execution Time
+1 +1 +1 -1 +1 -1 -1 9
-1 +1 +1 +1 -1 +1 -1 11
-1 -1 +1 +1 +1 -1 +1 2
+1 -1 -1 +1 +1 +1 -1 1
-1 +1 -1 -1 +1 +1 +1 9
+1 -1 +1 -1 -1 +1 +1 74
+1 +1 -1 +1 -1 -1 +1 7
-1 -1 -1 -1 -1 -1 -1 4
-1 -1 -1 +1 -1 +1 +1 17
+1 -1 -1 -1 +1 -1 +1 76
+1 +1 -1 -1 -1 +1 -1 6
-1 +1 +1 -1 -1 -1 +1 31
+1 -1 +1 +1 -1 -1 -1 19
-1 +1 -1 +1 +1 -1 -1 33
-1 -1 +1 -1 +1 +1 -1 6
+1 +1 +1 +1 +1 +1 +1 112
191 19 111 -13 79 55 239

For a Plackett and Burman design, the high and low values are slightly different than the

high and low values for the one-at-a-time design. A “+1”, or high value, for a parameter

represents a value that is slightly higher than the range of normal values for that

58

parameter while a “-1”, or low value, represents a value that is slightly lower than the

range of normal values. By comparison, the high and low values for the one-at-a-design

represent the range of values that the parameter normally can take.

It is important to note that the high and low values are not restricted to only numerical

values. For example, in the case of branch prediction, the high and low values could be

perfect and 2-level branch prediction, respectively. It is also important to note that

choosing high and low values that yield too large a range can artificially inflate the

parameter’s apparent effect. On the other hand, too small a range for a parameter means

that the parameter will have very little or no effect on the output. However, having too

large a range is better than having too small range because that ensures that that

parameter has an effect on the output variable. In any case, the user should carefully

choose the high and low values for each parameter that are just outside of the “normal”

range of values.

After determining the configurations and performing the simulations, the effect of each

parameter is computed by the multiplying the parameter’s Plackett and Burman value (+1

or -1) for that configuration by the output variable (e.g. execution time) for that

configuration and summing the resulting products across all configurations. For

example, given the execution times in the rightmost column in Table 4.2.2.1, the effect of

parameter A is computed as follows:

EffectA = (1 * 9) + (-1 * 11) + (-1 * 2) + … + (-1 * 33) + (-1 * 6) + (1 * 112) = 191

By performing the same computation for each parameter in Table 4.2.2.1, the results

show that the parameters that have the most effect on the execution time are parameters

G, A, and C, in order of their overall impact on performance. Only the magnitude of the

effect is important; the sign of the effect is meaningless.

After computing the magnitude of the effect for each parameter, the parameters were

ranked based on their magnitudes (1 = most important, X-1 = least important). Since the

59

execution time (in cycles), for the same processor configuration, can be very different

across benchmarks, the magnitudes of the effects reflect those differences. Consequently,

ranking the parameters by significance allows for comparisons between benchmarks,

which would not otherwise be possible due to the large differences in the execution

times.

Collectively, the ranks of all parameters form a vector of ranks, one for each benchmark.

These vectors are used as the basis for improving the simulation methodology. The

following three sections explain how these vectors can be used to improve the way in

which processor parameters are chosen, benchmarks are chosen, and the effect of an

enhancement is analyzed.

4.3. Processor Parameter Selection

Choosing the processor parameter values for simulation is the third step in the simulation

process as described in Section 4.1.1. Choosing a “good” set of values is very important

since improperly choosing the value of even a single parameter can significantly affect

the simulated speedup of a processor enhancement. For example, simply increasing the

reorder buffer size can change the speedup of value reuse [Yi02-1] from approximately

20% to approximately 30%.

However, choosing a good set of parameters is extremely difficult since many of the

important parameters may interact, thereby compounding the error of selecting a single

poor value. Determining which parameters interact requires performing a sensitivity

analysis on all of the parameters simultaneously or choosing a select few parameters for

detailed study. The problem with the former approach is that simulating all possible

combinations is a virtual impossibility. The problem with the latter approach is that in

studying only a few parameters, the other parameters have to have constant values.

Therefore, if one of the constant parameters significantly interacts with one of the free

parameters, then the results of the sensitivity analysis will be distorted.

60

A Plackett and Burman design solves this problem by quantifying the effect of all single

parameters. And since the most significant interactions are the by-product of the most

significant single parameters, the user needs only to determine the most important single

parameters.

To determine which single parameters are the most significant ones, for each parameter,

the rank of that parameter across all benchmarks is first summed together and then the

sums are sorted in ascending order. Consequently, the parameter with the lowest average

sum-of-ranks corresponds to, across all benchmarks, the parameter that has the most

effect on the variation in the execution time. Then, by examining the average sum-of-

ranks for each parameter, the computer architect can determine which parameters have

the most effect on the execution time and can then carefully choose values for those

parameters.

More formally, this dissertation recommends using the following steps as guide when

choosing processor parameter values:

1) Determine the most significant processor parameters using a Plackett and

Burman design.

a) Choose low and high values for each of the parameters.

b) Run and analyze the Plackett and Burman simulations to determine the

critical parameters.

2) Iteratively perform sensitivity analyses for each critical parameter using the

ANOVA design.

3) Choose final values for the significant parameters based on the results of the

sensitivity analyses.

4) Choose the final values for the remaining parameters based on commercial

processor values, or some other appropriate source.

61

Of these four steps, the most important step, by far, is the first step. In this step, the

computer architect uses a Plackett and Burman design to determine the most significant

parameters. The second step is optional depending on the results of the first step. For

example, in Table 4.2.2.1, the two most significant parameters are clearly parameters A

and G. Consequently, using an ANOVA design to compare the relative effect of

parameters A and G (and any related interactions) with parameter C is a waste of time

since parameters A and G are clearly much more important than parameter C. Finally, in

the third and fourth steps, the computer architect chooses the final values for all

parameters, based on the results of the first two steps and based on commercial parameter

values.

Detailed results demonstrating the efficacy of this approach are given in Section 6.3.1.

4.4. Benchmark Selection

Choosing the benchmarks and inputs for simulation is the fourth step in the simulation

process. Improperly choosing benchmarks and input sets may affect the results, the

conclusions that are drawn, or both. First of all, if a computer architect chooses a set of

benchmarks that does not accurately reflect the applications that the proposed processor

enhancement targets, then the apparent speedup due to that enhancement may be

misleading enough to affect the conclusion that the architect forms. Although the results

of those simulations are not wrong, they could still be misleading.

For example, if the proposed enhancement is a prefetching mechanism that seeks to

improve the performance of the memory hierarchy, choosing a set of benchmarks that

have very regular memory access patterns (as is the case for scientific programs), could

produce speedup results that are higher than the speedup results for a more memory-

intensive set of benchmarks. In that case, the architect may form a misleading

conclusion. Note that it is also possible for a poorly chosen set of benchmarks to

understate the speedup results.

62

However, how does the architect know if two benchmarks are similar or dissimilar? One

option is to relying on existing classifications, such as integer versus floating-point,

computationally-bound versus memory-bound, or by application type. The problem with

this approach is that two benchmarks that are classified differently may have the same

characteristics, such as having the same performance bottlenecks in the processor. On

the other hand, two benchmarks that are classified to be in the same group may have very

dissimilar characteristics. Therefore, simply relying on existing classifications, without

verifying the similarity of benchmarks within and across classification groups may still

result in a poor choice of benchmarks.

The solution proposed in this dissertation approaches this problem from a different

direction. Instead of classifying benchmarks based on their intrinsic characteristics,

benchmarks are classified based on what effect they have on the processor. Different

benchmarks have different processor-related performance limiting factors (i.e. different

bottlenecks). Therefore, two benchmarks that have a similar effect on the processor have

most of the same performance bottlenecks and consequently should be grouped together.

Since the results of the Plackett and Burman design show which parameters are the most

important (or in other words, are the biggest performance bottlenecks), comparing the

Plackett and Burman design results of two benchmarks indicates how similar the two

benchmarks are, in terms of their performance bottlenecks. Benchmarks that are similar

are put into the same group. After grouping all the benchmarks into different groups,

selecting the final set of the benchmarks is easy since the architect needs only to select

one benchmark from each group.

Detailed results demonstrating the efficacy of this approach are given in Section 6.3.2.

4.5. Analysis of a Processor Enhancement

The last step in the simulation process is analyzing the effect of an enhancement. For

63

most computer architects, the analysis extends only to calculating the speedup of the

processor enhancement or, measuring the amount of contention or the decrease in the

power consumption, or performing a sensitivity analysis of the key parameters. While

these approaches give the architect a high-level picture of the enhancement’s effect, it

shows only the net effect.

For example, suppose that a processor enhancement yields a speedup of 25%. Also

suppose that two parameters (A and B) are the primary performance bottlenecks in the

processor. One case is that the enhancement relieves both bottlenecks by about the same

amount. Therefore, the bottlenecks due to both parameters still exist, albeit to a lesser

degree. However, another case is that the enhancement relieves the bottleneck due to

parameter A, but exacerbates the bottleneck due to parameter B. While both cases could

result in the same speedup, the two cases arrive at that speedup by different ways.

Therefore, understanding what effect the enhancement has on the performance

bottlenecks is a crucial step in trying to improve the performance of the enhancement. In

other words, high-level metrics such as speedup only show what the enhancement did and

not how it got there. Since the “how” affects the “what”, it is important to determine the

effect that an enhancement has to a greater depth than just with high-level metrics.

Therefore, as a complement to the high-level metrics, this dissertation proposes using the

Plackett and Burman design to quantify the effect of an enhancement. The results of a

Plackett and Burman design can be used to measure the significance of all processor

parameters for the processor with and without the enhancement. Since the significance of

a parameter is an indication of how much of a performance bottleneck that parameter is, a

change in the significance of a parameter means that that parameter is more or less of a

performance bottleneck with that enhancement.

Therefore, to determine what effect an enhancement has on the each parameter, the

difference in the average sum-of-ranks for each parameter is computed. Consequently,

any parameter that experiences a large change in its average sum-of-ranks after an

64

enhancement is applied has become more of a bottleneck (Before-After < 0) or less of a

bottleneck (Before-After > 0).

Detailed results demonstrating the efficacy of this approach are given in Section 6.3.3.

4.6. Summary

This chapter describes three solutions, based on a Plackett and Burman design, which can

improve the quality of simulation methodology by adding statistical rigor to the

simulation process. The first solution attempts to improve how processor parameter

values are chosen, which is the third step of the simulation process. This solution uses

two steps. The first step identifies and chooses values for the most significant processor

parameters. In the second step, the architect chooses values for the remaining

parameters.

The second solution targets the fourth step of the simulation process, benchmark

selection. This solution helps the architect select a set of benchmarks by using the

Plackett and Burman design results to categorize the benchmarks into different groups.

Since benchmarks in the same group have a similar set of performance bottlenecks, to get

a wide range of benchmarks, the architect then needs to select only one benchmark from

each group.

Finally, the third and final solution seeks to improve the analysis phase of the simulation

process. By using the Plackett and Burman design results to rank and then sum the ranks

of each parameter, the architect can compare the average sum-of-ranks for each

parameter before and after the enhancement is applied to the processor. If the average

sum-of-ranks is higher after the enhancement is implemented in the processor, that means

that that enhancement decreases the significance of that parameter. In other words, this

parameter is now less of a performance bottleneck with this enhancement. A lower

65

average sum-of-ranks means that that parameter is now more of a performance

bottleneck.

66

Chapter 5

Experimental Framework

This chapter describes the experimental framework that was used for the results given in

Chapter 6. There are four main sections in this chapter. The first section describes the

architecture of sim-outorder, the superscalar simulator from the SimpleScalar tool suite

[Burger97]. The second and third sections describe the processor and memory

configurations that were used to evaluate the performance of Instruction Precomputation,

to evaluate the performance of Trivial Computation Simplification and Elimination, and

to generate the Plackett and Burman design vector of ranks. Finally Section 5.4 describes

the benchmarks and input sets that were used in this dissertation.

5.1. The SimpleScalar Superscalar Simulator

sim-outorder is the base superscalar simulator from the SimpleScalar 3.0 tool suite. sim-

outorder is an execution-driven, cycle-accurate simulator that models a five-stage

processor pipeline (fetch, decode and dispatch, issue and execute, writeback, and

commit). Although sim-outorder has a relatively low number of pipeline stages as

compared to commercial processors, it models a longer pipeline by offering a user-

configurable parameter that sets the number of cycles that it takes to flush the pipeline on

67

a branch misprediction and restart instruction execution from the first correct-path

instruction. In a superscalar processor, the number of pipeline stages between the branch

prediction and the branch execution determines the number of cycles it takes to detect a

branch misprediction (plus an additional few cycles to flush the instructions following the

mispredicted branch, and to start fetching and executing on the correct path).

Consequently, using a variable parameter to set the number of cycles that it takes to

detect and recover from a branch misprediction roughly models the effect of a longer

pipeline.

In addition to branch prediction, sim-outorder also has the following features: multiple

instruction fetch and execution, a monolithic reorder buffer, fully-pipelined functional

units, a load-store queue, store forwarding, and a two-level cache hierarchy.

Finally, although sim-outorder fairly accurately models most processor components, one

problem with this version of SimpleScalar is that its memory hierarchy does not fully

model two aspects of the memory hierarchy. First, instead of allowing only a limited

number of loads to access the memory hierarchy, sim-outorder allows an unlimited

number of loads to access memory. Also, instead of allowing only a limited of traffic

within the memory hierarchy, sim-outorder allows an unlimited amount of traffic

between the L1 caches and the L2 Cache. The net effect of these two differences is that

the memory hierarchy in sim-outorder is less of a performance bottleneck than it

normally would be in a superscalar processor. As a result, since Instruction

Precomputation and the Simplification and Elimination of Trivial Computations attempt

to improve the processor’s performance (and not the memory hierarchy’s performance),

the somewhat unrealistic memory performance most likely overestimates the

performance improvement of these two enhancements.

5.2. Instruction Precomputation and Trivial Computation Parameters

To evaluate the performance of Instruction Precomputation or the Simplification and

68

Elimination of Trivial Computations, each proposed technique was added to the base sim-

outorder simulator. For both techniques, the base processor was a four-way issue width

machine.

Table 5.2.1: Key Processor and Memory Parameters for the Performance

Evaluation of Instruction Precomputation and the Simplification and

Elimination of Trivial Computations

Parameter Value
Branch Predictor Combined

Number of Branch History Table Entries 8192
Return Address Stack (RAS) Entries 64

Branch Misprediction Penalty 3 Cycles
Instruction Fetch Queue (IFQ) Entries 32

Reorder Buffer (ROB) Entries 64
Number of Integer ALUs 2

Number of FP ALUs 2
Number of Integer Multipliers 1

Number of FP Multipliers 1
Load-Store Queue (LSQ) Entries 32

Number of Memory Ports 2
L1 D-Cache Size 32 KB

L1 D-Cache Associativity 2-Way
L1 D-Cache Block Size 32 Bytes
L1 D-Cache Latency 1 Cycle

L1 I-Cache Size 32 KB
L1 I-Cache Associativity 2-Way
L1 I-Cache Block Size 32 Bytes
L1 I-Cache Latency 1 Cycle

L2 Cache Size 256 KB
L2 Cache Associativity 4-Way
L2 Cache Block Size 64 Bytes
L2 Cache Latency 12 Cycles

Memory Latency, First Block 60 Cycles
Memory Latency, Following Block 5 Cycles
Memory Bandwidth (Bytes/Cycle) 32

TLB Latency 30 Cycles

Table 5.2.1 shows the values of the key processor and memory parameters that were used

for the performance evaluations of both techniques. These parameter values are similar

to those found in the Alpha 21264 [Kessler98, Kessler99, Leiholz97, Matson98] and the

69

MIPS R10000 [Yeager96].

5.3. Plackett and Burman Parameters

As was the case for the performance evaluation of Instruction Precomputation and the

Simplification and Elimination of Trivial Computations, the base simulator was sim-

outorder. sim-outorder was modified to include user configurable instruction latencies

and throughputs. The value of the instruction throughput is the number of cycles that

must separate the start of two instructions on the same functional unit. For example, if

the instruction throughput for the floating-point ALUs is two cycles and if instruction A

starts executing on a floating-point ALU at cycle 1000, instruction B cannot start

executing on that floating-point ALU until cycle 1002. However, instruction B can start

executing on any other floating-point ALU immediately.

It is important to mention that sim-outorder was used instead of the validated Alpha

21264 simulator [Desikan01] for three reasons. The first reason is that this is a

methodology study and not an architecture or performance-only study. Consequently,

since the simulation results serve only to illustrate certain key points, the choice of a

specific simulator does not affect the point that is being made. The second reason is that

the Alpha simulator contains many parameters that are specific to the Alpha architecture

while the basic SimpleScalar simulator models a vanilla superscalar processor.

Therefore, to avoid the risk of producing results that are particular to the Alpha 21264

processor, sim-outorder was chosen to be the base simulator. The third reason is that the

SimpleScalar simulator is itself a widely used simulator. Therefore, using this simulator

has the extra benefit of producing results that are beneficial to the SimpleScalar

community.

As stated in Chapter 4, the parameter values that were used in these simulations should be

slightly higher and lower than the normal range of values to allow the Plackett and

Burman design to work most efficiently. As a result, the final values for each parameter

70

are not values that would be actually present in commercial processors nor are they

supposed to represent a potential value. Rather, the values were deliberately chosen to

be values that were slightly higher and lower than the range of “reasonable” values.

Table 5.3.1: Processor Core Parameters and Their Plackett and Burman

Values

Processor Core Parameter Low Value High Value
Instruction Fetch Queue (IFQ) Entries 4 32

Branch Predictor 2-Level Perfect
Branch Predictor Misprediction Penalty 10 Cycles 2 Cycles

Return Address Stack (RAS) Entries 4 64
Branch Target Buffer (BTB) Entries 16 512

Branch Target Buffer (BTB) Associativity 2-Way Fully-Associative
Speculative Branch Update In Commit In Decode

Decode, Issue, and Commit Width 4-Way
Reorder Buffer (ROB) Entries 8 64

Load-Store Queue (LSQ) Entries 0.25 * ROB 1.0 * ROB
Memory Ports 1 4

Table 5.3.2: Functional Units Parameters and Their Plackett and Burman

Values

Functional Unit Parameter Low Value High Value
Integer ALUs 1 4

Integer ALU Latencies 2 Cycles 1 Cycle
Integer ALU Throughputs 1

FP ALUs 1 4
FP ALU Latencies 5 Cycles 1 Cycle

FP ALU Throughputs 1
Integer Mult/Div Units 1 4

Integer Multiply Latency 15 Cycles 2 Cycles
Integer Divide Latency 80 Cycles 10 Cycles

Integer Multiply Throughput 1
Integer Divide Throughput Equal to the Integer Divide Latency

FP Mult/Div Units 1 4
FP Multiply Latency 5 Cycles 2 Cycles
FP Divide Latency 35 Cycles 10 Cycles

FP Square Root Latency 35 Cycles 15 Cycles
FP Multiply Throughput Equal to the FP Multiply Latency
FP Divide Throughput Equal to the FP Divide Latency

FP Square Root Throughput Equal to the FP Square Root Latency

71

Choosing values in this way allows the Plackett and Burman design to more accurately

determine the effect of each parameter on the processor’s performance.

Table 5.3.3: Memory Hierarchy Parameters and Their Plackett and Burman

Values

Memory Hierarchy Parameter Low Value High Value
L1 I-Cache Size 4 KB 128 KB

L1 I-Cache Associativity 1-Way 8-Way
L1 I-Cache Block Size 16 Bytes 64 Bytes

L1 I-Cache Replacement Policy Least Recently Used (LRU)
L1 I-Cache Latency 4 Cycles 1 Cycle

L1 D-Cache Size 4 KB 128 KB
L1 D-Cache Associativity 1-Way 8-Way
L1 D-Cache Block Size 16 Bytes 64 Bytes

L1 D-Cache Replacement Policy Least Recently Used (LRU)
L1 D-Cache Latency 4 Cycles 1 Cycle

L2 Cache Size 256 KB 8192 KB
L2 Cache Associativity 1-Way 8-Way
L2 Cache Block Size 64 Bytes 256 Bytes

L2 Cache Replacement Policy Least Recently Used (LRU)
L2 Cache Latency 20 Cycles 5 Cycles

Memory Latency, First Block 200 Cycles 50 Cycles
Memory Latency, Following Blocks 0.02 * Memory Latency, First Block

Memory Bandwidth 4 Bytes 32 Bytes
I-TLB Size 32 Entries 256 Entries

I-TLB Page Size 4 KB 4096 KB
I-TLB Associativity 2-Way Fully-Associative

I-TLB Latency 80 Cycles 30 Cycles
D-TLB Size 32 Entries 256 Entries

D-TLB Page Size Same as I-TLB Page Size
D-TLB Associativity 2-Way Fully-Associative

D-TLB Latency Same as I-TLB Latency

Several parameters in these three tables are shaded in gray. For these parameters, the low

and high values cannot be chosen completely independently of the other parameters due

to the mechanics of a Plackett and Burman design. The problem occurs when one of the

shaded parameters is set to its high or low value and the parameter it is related to is set to

the opposite value. In those configurations, the combination of values for those

parameters leads to a situation that either does not make sense or would not actually

occur in a real processor. For example, if the number of LSQ entries were chosen

72

independently of the number of ROB entries, some of the configurations would have an

8-entry reorder buffer and a 64-entry LSQ. Since the total number of in-flight

instructions cannot exceed the number of reorder buffer entries, the maximum number of

filled LSQ entries could never exceed eight. Therefore, to avoid the above situation and

other similar ones, the specific values used in the simulations for all gray-shaded

parameters are based on their related parameter. This allows the gray-shaded parameters

to have a meaningful effect on the output, instead of being artificially constrained by

another parameter.

Finally, all parameter values were based on a four-way issue processor. While the issue

width is a very important parameter, the issue width was fixed at four for two reasons.

The first reason is the same as the reason given above for the parameters shaded in gray.

That is, if the issue width were set to its low value while the number of functional units

were set to their high values, then some of the functional units would never be used since

simulator allows only four new instructions to start executing per cycle. Second, several

four-way issue commercial processors exist and these processors are fairly well

documented. Therefore, to obtain a good range of values for each parameter, the issue

width was chosen to reflect the issue width of the processors with good documentation.

However, fixing the issue width to a constant value does not affect the conclusions drawn

from these simulations in any way. It merely removes the issue width as one of variable

parameters.

5.4. Benchmarks and Input Sets

To evaluate the performance of Instruction Precomputation, 12 benchmarks from the

SPEC CPU 2000 benchmark suite [Henning00], shown in Table 5.4.1, were used. The

leftmost column in Table 5.4.1 gives the benchmark name. The second and fourth

columns show the two input sets that were used for each benchmark, while the third and

fifth columns show the dynamic instruction count, in millions of instructions, for that

benchmark and input set combination. In the second and fourth columns, the specific file

73

is listed when there is more than one input set of that type. The input set in the second

and third columns is arbitrarily named “Input Set A” while the other input set is likewise

named “Input Set B”. Chapter 6 explains why two different input sets are used to

evaluate the performance of Instruction Precomputation.

Table 5.4.1: Selected SPEC CPU 2000 Benchmarks and Input Sets (Dynamic

Instruction Count in Millions of Instructions)

Benchmark Input Set A Name Instr. (M) Input Set B Name Instr. (M)
gzip Small (smred.log) 526.4 Medium (mdred.log) 531.4

vpr-Place Medium 216.9 Small 17.9
vpr-Route Medium 93.7 Small 5.7

gcc Medium 451.2 Test 1638.4
mesa Large 1220.6 Test 3239.6
art Large 2233.6 Test 4763.4
mcf Medium 174.7 Small 117.0

equake Large 715.9 Test 1461.9
ammp Medium 244.9 Small 68.1
parser Medium 459.3 Small 215.6
vortex Medium 380.3 Large 1050.0
bzip2 Large (lgred.source) 1553.4 Test 8929.1
twolf Test 214.6 Large 764.9

These benchmarks were chosen because they were the only ones that had MinneSPEC

[KleinOsowski02] large reduced input sets available at the time. Since the benchmark

vpr uses two “sub-input” sets, Place and Route, the results for each are listed separately.

To evaluate the performance of Trivial Computation Simplification and Elimination, the

same 12 benchmarks from the SPEC CPU 2000 benchmark suite were used. But instead

of using two input sets, as was the case for Instruction Precomputation, only one input

set, Input Set A, was used. The MediaBench benchmarks [Lee97] listed in Table 5.4.2

were also used to evaluate the performance that can be achieved by Simplifying and

Eliminating Trivial Computations.

Finally, to evaluate the efficacy of the Plackett and Burman design in generating a vector

of ranks that is useful in improving simulation methodology, the same 12 benchmarks

74

from the SPEC CPU 2000 benchmark suite were used. However, in this case, instead of

using small, medium, large, and test input sets, to reduce the differences in the total

dynamic instruction count, only large input sets were used. Table 5.4.3 shows the

benchmarks, input sets, and their dynamic instruction count.

Table 5.4.2: Selected MediaBench Benchmarks and Input Sets (Dynamic

Instruction Count in Millions of Instructions)

Benchmark Input Set Name Instr. (M)
adpcm-Decode clinton.adpcm 5.4
adpcm-Encode clinton.pcm 6.5
epic-Compress test_image.pgm 52.7

epic-Uncompress test.image.pgm.E 6.8
g721-Decode clinton.g721 269.4
g721-Encode clinton.pcm 276.9

mpeg2-Decode options.par 170.9
mpeg2-Encode mei16v2.m2v 1133.8
pegwit-Decrypt pegwit.dec 18.2
pegwit-Encrypt pgptest.plain 31.8
pegwit-Pub-Key my.sec 12.7

Table 5.4.3: Selected SPEC CPU 2000 Benchmarks with the Large Input Set

(Dynamic Instruction Count in Millions of Instructions)

Benchmark Input Set Name Instr. (M)
gzip Large (lgred.graphic) 1364.2

vpr-Place Large 1521.7
vpr-Route Large 881.1

gcc Large 4040.7
mesa Large 1217.9
art Large 2181.1
mcf Large 601.2

equake Large 713.7
ammp Large 1228.1
parser Large 2721.6
vortex Large 1050.2
bzip2 Large (lgred.graphic) 2467.7
twolf Large 764.6

In this dissertation, all benchmarks were compiled at optimization level -O3 using the

SimpleScalar version of the gcc compiler (version 2.6.3). All benchmarks were compiled

75

to target the PISA instruction-set, which is a MIPS-like instruction-set. Finally, the

benchmarks ran to completion without fast-forwarding.

76

Chapter 6

Performance Evaluation

The results in this chapter are divided into three main sections that reflect the contents of

Chapters 2, 3, and 4. Section 6.1 presents the performance results for Instruction

Precomputation while Section 6.2 does the same for the Simplification and Elimination

of Trivial Computations. Finally, the results in Section 6.3 show how the Plackett and

Burman design can be used to improve selected steps of the simulation process.

6.1. Instruction Precomputation Performance Results

The performance results for Instruction Precomputation are divided into five groups. The

results of the first group present the upper-bound performance results of Instruction

Precomputation; the upper-bound occurs when the same input set is used for both

profiling and performance simulation. To accomplish this, the benchmark was first

profiled with Input Set A to find the highest frequency unique computations and then

evaluated the performance of Instruction Precomputation with that benchmark by again

using Input Set A. The shorthand notation is Profile A, Run A.

However, since it extremely unlikely that the same input set that is used to profile the

benchmark will also the same input set that will be used to run the benchmark, Section

77

6.1.2 presents the results for when two different input sets are used, i.e. Profile B, Run A.

This group of results represents the typical case.

Since the highest frequency unique computations from two different input sets may be

very different from each other and since this could affect the performance of Instruction

Precomputation, one solution is to combine the two sets of unique computations together.

In other words, instead of profiling only a single input set, this solution uses the superset

of profiling results from two input sets. This test case is known as Profile AB, Run, A.

As described in Chapter 2, one of the ways that Instruction Precomputation improves a

processor’s performance is by reducing the execution latency of the instructions that

match a unique computation in the Precomputation Table (PT). Consequently,

dynamically removing instructions with the longest execution latencies yields the largest

performance gain. Therefore, choosing unique computations purely by their frequency of

execution may not yield the largest performance gain since some low frequency unique

computations may have longer execution latencies. As a result, the results in Section

6.1.4 compare the performance of Instruction Precomputation when using the highest

frequency unique computations and when using the unique computations with the highest

frequency/latency product.

The final group of results compares the performance improvement of Instruction

Precomputation against the performance improvement of value reuse. These results are

given in Section 6.1.5.

Note: When not explicitly stated, any specific results are assumed to be from the Profile

B, Run A test case.

6.1.1. Upper-Bound – Profile A, Run A

Since Instruction Precomputation consists of two key steps – profiling and the dynamic

removal of redundant computations – using the same input set for both represents the

78

upper-bound on performance. This case is the upper-bound because using the same input

set to profile and run a benchmark will determine the set of unique computations that

account for the largest possible percentage of instructions for that benchmark and input

set. Therefore, since removing the largest possible number of instructions can minimize

the execution time, using the same input set to profile and run the benchmark is the

upper-bound.

The following figure, Figure 6.1.1.1, shows the speedup due to Instruction

Precomputation, for 16 to 2048 PT entries, when Input Set A is used both for profiling

and for execution. For comparison, the speedup due to using a L1 D-Cache that is twice

as large as the L1 D-Cache of the base processor is included. This result, labeled “Big

Cache”, represents the alternative of using the chip area for something other than the PT.

The total capacity of this cache is 64 KB.

0

5

10

15

20

25

30

35

40

45

50

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a ar
t

m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Ave
ra

ge

Benchmark

S
p
ee

d
u
p
 (
P

er
ce

n
t)

Big Cache 16 32 64 128 256 512 1024 2048

Figure 6.1.1.1: Speedup Due to Instruction Precomputation; Profile Input

Set A, Run Input Set A, Frequency

Figure 6.1.1.1 shows that the average upper-bound speedup due to using a 16-entry PT is

4.82% for these 13 benchmarks (counting vpr-Place and vpr-Route separately) while the

speedup due to using a 2048-entry PT is 10.87%. Across all benchmarks, the range of

79

speedups for a 2048-entry PT is 0.69% (art) to 45.05% (mesa). The average speedup

results demonstrate that the upper-bound performance improvement due to Instruction

Precomputation is fairly good for all table sizes.

Instruction Precomputation is very effective in decreasing the execution time for two

benchmarks, mesa and equake, even for very small PTs. For mesa, the speedup for a 16-

entry PT is 19.19% while the speedup for a 2048-entry PT is 45.03%. For equake, the

speedups range from 9.35% to 28.71% for the same PT sizes. The reason that Instruction

Precomputation is particularly effective in reducing the execution time of these

benchmarks is because the Top 2048 unique computations account for a very large

percentage of the total dynamic instructions. Table 3.2.1.1 shows that the 2048 highest

frequency unique computations account for 44.49% and 37.87% of the total dynamic

instructions count in mesa and equake, respectively.

For mesa, the speedup levels off for Precomputation Tables larger than 128-entries. For

equake, the speedup levels off after 1024-entries. The reason for this is that the unique

computations that are in the bottom “half” of the Precomputation Table account for a

lower percentage of dynamic instructions than the unique computations in the top half.

For example, in mesa, the 64 highest frequency unique computations account for 34.96%

of the total dynamic instructions while the next 64 highest frequency unique

computations account for only an additional 7.69%. As a result, doubling the

Precomputation Table size yields smaller and smaller performance gains.

The average speedup due to using the larger L1 D-Cache is 0.74%. By comparison, the

upper-bound speedup when using a 2048-entry Precomputation Table (approximately 26

KB, assuming a one byte opcode, two four byte input operands, and a four byte output

value) averages 10.87%. In other words, using approximately the same chip area for a

Precomputation Table instead of for a larger L1 D-Cache improves the performance of

the base processor by an additional 10%.

80

6.1.2. Different Input Sets – Profile B, Run A

While the previous sub-section showed that the upper-bound speedup due to Instruction

Precomputation was approximately 10% for a 2048-entry PT, the actual, i.e. achievable,

speedup may be much lower if the highest frequency unique computations from two

different input sets are very different. Therefore, for Instruction Precomputation to be

useful, the highest frequency unique computations in one input set have to be among the

highest frequency unique computations in another input set. If not, then Instruction

Precomputation may not be a very practical microarchitectural enhancement.

Figure 6.1.2.1 shows the speedup due to Instruction Precomputation when using Input Set

B for profiling and Input Set A for execution. The figure shows the speedup using 16-

entry to 2048-entry PT tables that hold the highest frequency unique computations.

0

5

10

15

20

25

30

35

40

45

50

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a ar
t

m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Ave
ra

ge

Benchmark

S
p
ee

d
u
p
 (
P

er
ce

n
t)

16 32 64 128 256 512 1024 2048

Figure 6.1.2.1: Speedup Due to Instruction Precomputation; Profile Input

Set B, Run Input Set A, Frequency

As shown in Figure 6.1.2.1, the average speedup ranges from 4.47% for a 16-entry PT to

10.53% for a 2048-entry PT. By comparison, the speedup for Profile A, Run A ranges

from 4.82% to 10.87% for the same table sizes. These results show that the average

81

speedups for Profile B, Run A are very close to the upper bound speedups for the

endpoint PT sizes. In addition, with one key exception, mesa, the speedups for each

benchmark, for a given PT size, are similar.

Table 6.1.2.1 shows the speedups for mesa when using Input Set A for execution while

using Input Sets A and B for profiling.

Table 6.1.2.1: Speedup Due to Instruction Precomputation for mesa; Profile

Input Set A, Run Input Set A versus Profile Input Set B, Run Input Set A,

Frequency

PT Entries Profile A, Run A Profile B, Run A Difference
16 19.19 16.91 2.28
32 23.49 16.92 6.56
64 31.77 22.59 9.18
128 43.40 29.45 13.95
256 45.40 44.37 1.03
512 45.40 45.40 0.00
1024 45.40 45.40 0.00
2048 45.40 45.40 0.00

The largest difference between the two sets of speedups is for the 32-entry, 64-entry, and

128-entry PTs. Those differences completely disappear for PT sizes larger than 256

entries. The reason for the speedup differences and their subsequent disappearance is that

the highest frequency unique computations for Input Set B, do not have as high a

frequency of execution for Input Set A. Therefore, until the highest frequency unique

computations for Input Set A are included in the PT (for PT sizes larger than 128), the

speedup for Profile B, Run A for mesa will be much lower than the upper-bound

speedup.

On the other hand, since the Profile B, Run A speedup is very significant for the smaller

table sizes, some unique computations have a fairly high frequency of execution for both

input sets.

82

Finally, for a few benchmarks and table sizes, the speedup is actually slightly higher than

the “upper-bound” for Profile B, Run A. While these differences in speedups are fairly

small (less than 0.3% difference), this result shows that the highest frequency unique

computations for one input set may have an even higher frequency of execution in

another input set.

The key conclusion of this sub-section is that the performance of Instruction

Precomputation is generally not affected by the specific input set since the Profile B, Run

A speedups are very close to the upper-bound speedups. This conclusion is not

particularly surprising since Table 2.3.1 showed that a large number of the highest

frequency unique computations occur for multiple input sets. Therefore, although

different input sets may be used for profiling and execution, since the same high

frequency unique computations occur for multiple input sets, Instruction Precomputation

is an effective method of improving the processor’s performance.

6.1.3. Combination of Input Sets – Profile AB, Run A

While the performance of Instruction Precomputation is generally not affected by the

specific input set, the speedup when different input sets are used for profiling and

execution affects at least one benchmark (mesa). Although the difference in speedups

disappeared for larger PT sizes, sufficient chip area may not exist to allow for a larger

table. One potential solution to this problem is to combine two sets of unique

computations – which are the product of two different input sets – to form a single set of

unique computations that may be more representative of all input sets.

To form this combined set of unique computations, unique computations were selected

from the 2048 highest frequency unique computations from Input Set A and Input Set B.

Excluding duplicates, the unique computations that were chosen for the final set were the

ones that accounted for the largest percentage of dynamic instructions for their input set.

In other words, when combining sets of unique computations, only the unique

83

computations that represent the largest percentage of instructions are chosen for the final

set.

Figure 6.1.3.1 shows the speedup due to Instruction Precomputation when using Input

Sets A and B for profiling and Input Set A for execution. The figure shows the speedup

using 16-entry to 2048-entry PT tables that hold the highest frequency unique

computations from each input set.

0

5

10

15

20

25

30

35

40

45

50

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a ar
t

m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Ave
ra

ge

Benchmark

S
p
ee

d
u
p
 (
P

er
ce

n
t)

16 32 64 128 256 512 1024 2048

Figure 6.1.3.1: Speedup Due to Instruction Precomputation; Profile Input

Set AB, Run Input Set A, Frequency

As shown in Figure 6.1.2.1, the average speedup ranges from 4.53% for a 16-entry PT to

10.71% for a 2048-entry PT. By comparison, the speedup for Profile A, Run A ranges

from 4.82% to 10.87% for the same table sizes, while the speedup for Profile B, Run A

ranges from 4.47% to 10.53%. Therefore, while the average speedups for Profile AB,

Run A are closer to the upper bound speedups, using the combined set of unique

computations provides only a slight, but measurable, performance improvement over the

Profile B, Run A speedups.

84

The main reason that the speedups for Profile AB are only slightly higher than the

speedups for Profile B is that the highest frequency unique computations from Input Set

A are very similar to their counterparts from Input Set B, for most benchmarks. Table

2.3.1 (given below for convenience) shows that with the exceptions of vpr-Place, mesa,

and twolf, more than half of the unique computations are among the highest frequency

unique computations for Input Set A and Input Set B. Therefore, since most of the

unique computations in the final set are common to both input sets, it is not surprising to

see that the speedup is only slightly higher.

Table 6.1.3.1: Number of Unique Computations that are Present in Two Sets

of 2048 of the Highest Frequency Unique Computations from Two Different

Input Sets

Benchmark In Common Percentage
gzip 2028 99.0%

vpr-Place 527 25.7%
vpr-Route 1228 60.0%

gcc 1951 95.3%
mesa 589 28.8%
art 1615 78.9%
mcf 1675 81.8%

equake 1816 88.7%
ammp 1862 90.9%
parser 1309 63.9%
vortex 1298 63.4%
bzip2 1198 58.5%
twolf 397 19.4%

In the case of vpr-Place, although the percentage of unique computations is relatively low

(25.7%), the average speedup using the 2048 PT entries for the Profile B, Run A case is

still fairly high (9.41%). However, after combining the two sets of unique computations

together, the average speedup using the 2048 PT entries for the Profile AB, Run is

significantly higher (12.97%). These results show that combining two sets of unique

computations together to form a single set, which is more representative of all input sets,

produces a higher speedup.

85

For mesa, the percentage of common unique computations is even lower (28.8%) than the

speedup for Profile B, Run A (45.40%) using 2048 PT entries. However, the 256 highest

frequency unique computations account for 44.3% of the dynamic instructions in Input

Set A; by comparison, the 2048 highest frequency unique computations account for only

44.5%. Therefore, for this benchmark, very few unique computations need to be

common to both input sets for a significant percentage of the dynamic instructions to be

accounted for.

For twolf, the speedups for the Profile B, Run A case and the Profile AB, Run A case are

very close (4.38% for Profile B, Run A and 4.40% for Profile AB, Run A), which would

seem to indicate that the highest frequency unique computations are generally dissimilar.

This conclusion is confirmed by the fact that twolf has the lowest percentage of unique

computations that are common across both input sets. In other words, the reason that

only 19.4% of the top 2048 highest frequency unique computations are common across

input sets is because the highest frequency unique computations are generally different.

One by-product of this characteristic for twolf is that combining sets of unique

computations does not significantly improve the performance.

Finally, although Profile AB yields slightly higher speedups, the downside of this

approach is that the compiler needs to profile two input sets. Therefore, from a cost-

benefit point-of-view, an additional 0.29% (16 PT entries) to 0.15% (2048 PT entries)

average speedup does not offset the cost of profiling two input sets and combining their

unique computations together.

6.1.4. Frequency versus Frequency and Latency Product

The last three sub-sections presented the speedup results for Instruction Precomputation

based on choosing the highest frequency unique computations. Although the set of the

highest frequency unique computations represents the largest percentage of dynamic

instructions, those instructions could have a lower impact on the execution time than their

numbers would suggest since many of those dynamic instructions have a single-cycle

86

execution latency. Therefore, instead of simply choosing unique computations based

only on their frequency of execution, choosing the unique computations that have the

highest frequency/latency product (F/LP) could yield a larger performance gain. Since

the execution latency of a unique computation is strictly determined by its opcode, to

compute the F/LP for a unique computation, one need only to multiply the frequency of

that unique computation by its execution latency. Choosing unique computations based

on their F/LP, instead of solely by their frequency, may yield a larger performance gain

since the highest F/LP unique computations may potentially account for more execution

cycles than the highest frequency unique computations.

Figure 6.1.4.1 shows the speedup due to Instruction Precomputation when using Input Set

B for profiling and Input Set A for execution. The figure shows the speedup using 16-

entry to 2048-entry PT tables that hold the unique computations with the highest F/LP.

The F/LP is computed by multiplying the frequency of execution by the execution

latency for that instruction (fixed latencies for each opcode).

0

5

10

15

20

25

30

35

40

45

50

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a ar
t

m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Ave
ra

ge

Benchmark

S
p
ee

d
u
p
 (
P

er
ce

n
t)

16 32 64 128 256 512 1024 2048

Figure 6.1.4.1: Speedup Due to Instruction Precomputation for the Highest

Frequency and Latency Product Unique Computations; Profile B, Run A

87

As shown in Figure 6.1.4.1, the average speedup ranges from 3.85% for a 16-entry PT to

10.49% for a 2048-entry PT. In most cases, the speedup when using the highest F/LP

unique computations is slightly lower than the speedups when using the highest

frequency unique computations. While this result may seem a little counterintuitive, the

explanation for this result is because the processor can issue and execute instructions out-

of-order. By issuing and executing instructions out-of-order, the processor is able to hide

the latency of longer-latency instructions by issuing or executing other instructions.

While the processor is able to tolerate the effect of longer execution latencies, it is

somewhat limited by the number of functional units. By using the highest F/LP unique

computations, fewer instructions are dynamically eliminated (as compared to when using

the highest frequency unique computations), thus increasing the number of instructions

that require a functional unit. As a result, any performance improvements gained by

using the highest F/LP unique computations are partially offset by the higher amount of

functional unit contention.

6.1.5. Performance of Instruction Precomputation versus Value Reuse

As described in Chapters 1 and 2, value reuse is a microarchitectural technique that

dynamically removes redundant computations from the processor’s pipeline by

forwarding their output values from the value reuse table (VRT) [Sodani97, Sodani98].

The key difference between value reuse and Instruction Precomputation is that value

reuse dynamically updates the VRT while the Precomputation Table is statically

managed by the compiler. Since the two approaches are quite similar, this sub-section

compares the speedup results of Instruction Precomputation with the speedup results for

value reuse. Figure 6.1.5 shows the average speedup results for value reuse when

executing Input Set A.

The configuration of the base processor is the same as the base processor configuration

for Instruction Precomputation. The number of value reuse table entries varies from 16

to 2048 entries. Each entry holds the opcode, input operands, and output value of a

88

redundant computation. When the program begins execution, all entries of the VRT are

invalid. During program execution, the opcode and input operands of each dynamic

instruction are compared to the opcodes and input operands in the VRT. As with

Instruction Precomputation, when the opcodes and input operands match, the VRT

forwards the output value to that instruction and it is removed from the pipeline.

Otherwise, the instruction executes normally. Entries in the VRT are replaced only when

the VRT is full. In that event, the least-recently used (LRU) entry is replaced.

0

5

10

15

20

25

30

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a ar
t

m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Ave
ra

ge

Benchmark

S
p
ee

d
u
p
 (
P

er
ce

n
t)

16 32 64 128 256 512 1024 2048

Figure 6.1.5.1: Speedup Due to Value Reuse; Run A

As shown in Figure 6.1.5.1, the average speedup ranges from 1.82% for a 16-entry VRT

to 7.43% for a 2048-entry VRT while the speedup for Instruction Precomputation (Profile

B, Run A) ranges from 4.47% to 10.53% for the same number of table entries.

Therefore, for all table sizes, Instruction Precomputation has a higher speedup. This

difference is especially noticeable for the 16-entry tables.

Since value reuse constantly replaces the LRU entry with the opcode and input operands

of the latest dynamic instruction, the VRT can easily be filled with low frequency unique

computations when it is very small. By contrast, Instruction Precomputation is most

effective when the table size is small since each entry in the PT accounts for a large

89

percentage of dynamic instructions. The reason that the VRT could be filled with lower

frequency unique computations while the PT is filled with highest frequency ones is

because Instruction Precomputation selects the highest frequency unique computations

based on profiling while the value reuse hardware effectively assumes that the frequency

of recently executed computations is higher than the frequency of the LRU entries.

In conclusion, while value reuse is very limited by the VRT size, Instruction

Precomputation is especially effective. Overall, the average speedup for Instruction

Precomputation is significantly higher than the average speedup for value reuse for all

table sizes. This result shows that using the compiler to choose the highest frequency

unique computations is better than using hardware to do the same, especially for smaller

table sizes.

6.1.6. Summary

The results in this section show that Instruction Precomputation can significantly improve

the processor’s performance, by an average of 10.53% and up to 45.40% for a 2048-entry

table. For all table sizes, the average speedups for the Profile B, Run A; Profile AB, Run

A; and the F/LP configurations are quite close to the upper bound speedup. Finally, the

results in the last sub-section showed that the average speedup due to Instruction

Precomputation was much higher than the average speedup for value reuse, especially for

the smaller table sizes.

6.2. Performance Results for Exploiting Trivial Computations

This section presents the speedup results when execution of the trivial computations in

the benchmark are simplified or eliminated. Section 6.2.1 gives the speedup results for

the baseline processor configuration, shown in Table 5.2.1. Section 6.2.2 gives the

speedup results when additional functional units are added to the baseline processor

90

configuration to remove any functional unit constraints. In each section, the speedup

results for the SPEC and MediaBench benchmarks are given in separate figures.

6.2.1. Realistic Processor Configuration

This processor configuration is labeled as the “realistic” processor configuration since it

closely resembles the configurations of the MIPS R10000 and Alpha 21264. Figures

6.2.1.1 and 6.2.1.2 show the performance improvement by simplifying and eliminating

trivial computations for the SPEC and MediaBench benchmarks, respectively. The

rightmost bar in each figure shows the average speedup across the benchmarks from that

benchmark suite.

0

5

10

15

20

25

30

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a ar
t

m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Av
er

ag
e

Benchmark

S
p
ee

d
u
p
 (
P
er

ce
n
t)

Figure 6.2.1.1: Speedup Due to the Simplification and Elimination of Trivial

Computations for Selected SPEC 2000 Benchmarks, Realistic Processor

Configuration

Figure 6.2.1.1 shows that simplifying and eliminating trivial computations yields

speedups of 1.31% (bzip2) to 27.36% (mesa), with an average of 8.86% for the 13 SPEC

benchmarks. The speedups for the MediaBench benchmarks are 2.97% (epic-Compress)

to 13.97% (epic-Uncompress), with an average of 4.00%. These results show that

91

exploiting trivial computations can significantly decrease the execution time of the SPEC

benchmarks while moderately decreasing the execution time of the MediaBench

benchmarks.

0

2

4

6

8

10

12

14

16

ad
pc

m
-D

ec
od

e

ad
pc

m
-E

nc
od

e

ep
ic-

C
om

pr
es

s

ep
ic-

U
nc

om
pr

es
s

g7
21

-D
ec

od
e

g7
21

-E
nc

od
e

m
pe

g2
-D

ec
od

e

m
pe

g2
-E

nc
od

e

Ave
ra

ge

Benchmark

S
p
ee

d
u
p
 (
P
er

ce
n
t)

Figure 6.2.1.2: Speedup Due to the Simplification and Elimination of Trivial

Computations for Selected MediaBench Benchmarks, Realistic Processor

Configuration

The SPEC benchmarks have a higher average speedup than the MediaBench benchmarks

for two reasons. First, the SPEC benchmarks have a higher percentage of instructions

that could be trivial computations. Second, in the SPEC benchmarks, a higher percentage

of those eligible instructions are trivial computations. The net effect of these two reasons

is that, in the SPEC benchmarks, a higher percentage of the total instructions are trivial

computations.

For each benchmark, in general, the speedup due to simplifying and eliminating trivial

computations is correlated to the percentage of the total instructions that are trivial

computations. For example, mesa has the highest speedup (27.36%) and also the largest

percentage of instructions that are trivial computations (24.74%). On the other hand, gzip

92

has the lowest percentage of instructions that are trivial computations (1.87%) while

having the second-lowest speedup (1.64%).

However, the correlation between the percentage of instructions that are trivial

computations and the speedup resulting from exploiting these trivial computations is not

universally true. epic-Uncompress, at 13.97%, has the fourth highest speedup across all

of these benchmarks, although it has the third lowest percentage of instructions that are

trivial computations. There are at least two reasons as to why this correlation does not

hold for all benchmarks. First of all, eliminating a trivial computation affects the

performance more than simplifying a trivial computation since eliminating a trivial

computation reduces that instruction’s latency to zero cycles while simplifying it reduces

it to two cycles (1 cycle to issue the instruction and another to execute it). Also, although

simplifying a trivial computation could dramatically reduce its execution latency, the

simplified instruction still uses a functional unit, albeit a different one, which increases

the amount of functional unit contention. Finally, by definition, only trivial computations

that can be eliminated benefit from early non-speculative instruction execution.

Second of all, although a benchmark may have a relatively large percentage of trivial

computations, if very few of those trivial computations on are the program’s critical path,

then simplifying or eliminating most of the benchmark’s trivial computations will not

significantly improve the processor’s performance. (Determining which computations

are critical and which are not is virtually impossible since it requires storing all dynamic

instructions in memory.)

6.2.2. Enhanced Processor Configuration

One potential criticism of simplifying and eliminating trivial computations is that the

trivial computation hardware merely functions as an additional functional unit or two. In

other words, the processor’s performance could be similarly improved by adding a couple

of functional units. To determine the validity of this criticism, Figures 6.2.2.1 and 6.2.2.2

show the speedup due to simplifying and eliminating trivial computations for a base

93

processor without any functional unit constraints (there are four functional units of each

type, which matches the maximum issue width).

0

5

10

15

20

25

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a ar
t

m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Av
er

ag
e

Benchmark

S
p
ee

d
u
p
 (
P
er

ce
n
t)

Figure 6.2.2.1: Speedup Due to the Simplification and Elimination of Trivial

Computations for Selected SPEC 2000 Benchmarks, Enhanced Processor

Configuration

For the SPEC benchmarks, Figure 6.2.2.1 shows that the speedups range from 0.95%

(bzip2) to 20.09% (mesa), with an average of 6.60%. For the MediaBench benchmarks,

Figure 6.2.2.2 shows that the speedups range from 1.86% (adpcm-Decode) to 10.04%

(mpeg2-Encode), with an average of 2.92%. These results show that even for a processor

without any functional unit constraints, exploiting trivial computations can either

moderately (SPEC) or slightly (MediaBench) decrease the execution time. Therefore, the

criticism that the trivial computation hardware simply functions as a de facto functional

unit is generally incorrect.

Although the average speedup for the SPEC benchmarks is fairly impressive, two

benchmarks, mesa and vortex, have significantly lower speedups when the base processor

uses the enhanced processor configuration. The speedup for mesa decreases from

27.36% when using the realistic processor configuration to 20.09% when using the

94

enhanced processor configuration while the speedup for vortex decreases from 9.34% to

3.66%. The speedup of epic-Uncompress also exhibits a similar change (13.97% to

4.05%) when using those two configurations. The reason that the speedups decrease is

because the enhanced processor configuration relieves much of the functional unit

contention, which previously limited the processor’s performance and allowed the trivial

computation hardware to have more effect.

0

2

4

6

8

10

12

ad
pc

m
-D

ec
od

e

ad
pc

m
-E

nc
od

e

ep
ic-

C
om

pr
es

s

ep
ic-

U
nc

om
pr

es
s

g7
21

-D
ec

od
e

g7
21

-E
nc

od
e

m
pe

g2
-D

ec
od

e

m
pe

g2
-E

nc
od

e

Ave
ra

ge

Benchmark

S
p
ee

d
u
p
 (
P
er

ce
n
t)

Figure 6.2.2.2: Speedup Due to the Simplification and Elimination of Trivial

Computations for Selected MediaBench Benchmarks, Enhanced Processor

Configuration

Therefore, for these three benchmarks, since the speedups sharply decreases when

additional functional units are added to the base processor, the criticism of exploiting

trivial computation hardware is somewhat accurate. However, simplifying and

eliminating trivial computations still decreases the execution time of these benchmarks

(and the other benchmarks) by reducing the execution latency of some instructions and

by early non-speculative instruction execution.

The speedups for three other benchmarks, twolf, epic-Compress, and mpeg2-Encode,

increased from 13.62% to 13.92%; 2.97% to 6.02%; and 5.24% to 10.04%; respectively,

95

when using the enhanced processor configuration. Since the base execution time when

using the enhanced configuration is lower than the base execution time when using the

realistic configuration, the performance impact of early non-speculative instruction

execution and reducing the instruction’s execution latency have a larger effect. In other

words, the decrease in the number of cycles due to dynamically simplifying and

eliminating trivial computations accounts for a larger percentage of the total execution

time, which then yields a larger speedup.

6.2.3. Summary

The results in this section show that the Simplification and Elimination of Trivial

Computations can significantly improve the processor’s performance. For a realistic

processor configuration, adding hardware to exploit trivial computations yields an

average speedup of 8.86% for the SPEC benchmarks and 4.00% for the MediaBench

benchmarks. Even for a processor without any functional unit constraints, this

enhancement still yields average speedups of 6.60% and 2.92% for the SPEC and

MediaBench benchmarks, respectively. This last result illustrates the efficacy that

reducing an instruction’s execution latency and non-speculatively executing instructions

early can have on the processor’s performance.

6.3. The Results of Applying a Statistically Rigorous Simulation

Methodology

As described in Chapter 4, a computer architect can use the results of a Plackett and

Burman design in three ways to improve simulation methodology. First, when choosing

processor parameter values, the architect can use the Plackett and Burman design to

determine which parameters have the most effect on the performance. Second, when

choosing the set of benchmarks, architect can use the Plackett and Burman design to

determine the similarity between benchmarks. Finally, the architect can use the Plackett

96

and Burman design as an analysis tool to finely examine the effect that an enhancement

has on the processor.

Using the Plackett and Burman design, Section 6.3.1 determines the most significant

SimpleScalar processor parameters while Section 6.3.2 chooses a set of statistically

different benchmarks. Finally, Section 6.3.3 analyzes the effect that Instruction

Precomputation and Simplifying and Eliminating Trivial Computations have on the

processor.

6.3.1. Analysis of Processor Parameters for Parameter Value Selection

The third step of the simulation process is parameter value selection. The key to

minimizing the amount of error is to understand which parameters have the most effect

on the processor’s performance. Table 6.3.1.1 presents the parameters in descending

order of significance.

Table 6.3.1.1 shows the results of a Plackett and Burman design with foldover (X=44) for

a superscalar processor with the parameter values shown in Tables 5.3.1, 5.3.2., and

5.3.3. After simulating all 88 (2*X) configurations, the Plackett and Burman design

results were calculated by first assigning a rank to each parameter based on its

significance (1 = most important). Then the ranks of each parameter were averaged

across all benchmarks and the resulting averages sorted in ascending order; the rightmost

column shows the average sum-of-ranks. Averaging the ranks across benchmarks reveals

the most significant parameters across all of the benchmarks. Consequently, the

parameters with the lowest averages represent the parameters that have the most effect

across all benchmarks.

This table shows several key results. First, only the first ten parameters are significant

across all benchmarks. This conclusion is drawn by examining the large difference

between the average sum-of-ranks of the 10th parameter, LSQ size, which has an average

sum-of-ranks of 12.6, and the average sum-of-ranks of the 11th parameter, Speculative

97

Branch Update, which has an average sum-of-ranks of 18.2. Furthermore, while the

ranks of the top ten parameters for each benchmark are completely different, two

parameters, ROB Entries and L2 Cache Latency are significant across all of the

benchmarks since those two parameters invariably have one of the lowest ranks for every

benchmark. Stating it differently, this means that the ROB and the L2 Cache Latency are

the two biggest bottlenecks in the processor across all of the benchmarks tested in this

dissertation. Therefore, of all the user-configurable simulator parameters, the architect

needs to be especially careful when choosing parameter values for the number of reorder

buffer entries and the L2 Cache Latency.

Table 6.3.1.1: Plackett and Burman Design Results for All Processor

Parameters; Ranked by Significance and Sorted by the Average Sum-of-

Ranks
Parameter gzip vpr-Place vpr-Route gcc mesa art mcf equake ammp parser vortex bzip2 twolf Ave

ROB Entries 1 4 1 4 3 2 2 3 6 1 4 1 4 2.8
L2 Cache Latency 4 2 4 2 2 4 4 2 13 3 2 8 2 4.0
Branch Predictor 2 5 3 5 5 27 11 6 4 4 16 7 5 7.7

Int ALUs 3 7 5 8 4 29 8 9 19 6 9 2 9 9.1
L1 D-Cache Latency 7 6 7 7 12 8 14 5 40 7 5 6 6 10.0

L1 I-Cache Size 6 1 12 1 1 12 37 1 36 8 1 16 1 10.2
L2 Cache Size 9 35 2 6 21 1 1 7 2 2 6 3 43 10.6

L1 I-Cache Block Size 16 3 20 3 16 10 32 4 10 11 3 22 3 11.8
Memory Latency First 36 25 6 9 23 3 3 8 1 5 8 5 28 12.3

LSQ Entries 12 14 9 10 13 39 10 10 17 9 7 4 10 12.6
Speculative Branch Update 8 17 23 28 7 16 39 12 8 20 22 20 17 18.2

D-TLB Size 20 28 11 23 29 13 12 11 25 14 25 11 24 18.9
L1 D-Cache Size 18 8 10 12 39 18 9 36 32 21 12 31 7 19.5

L1 I-Cache Associativity 5 40 15 29 8 34 23 28 16 17 15 9 21 20.0
FP Multiply Latency 31 12 22 11 19 24 15 23 24 29 14 23 19 20.5
Memory Bandwidth 37 36 13 14 43 6 6 29 3 12 19 12 38 20.6
Int ALU Latencies 15 15 18 13 41 22 33 14 30 16 41 10 16 21.8

BTB Entries 10 24 19 20 9 42 31 20 22 19 20 17 34 22.1
L1 D-Cache Block Size 17 29 34 22 15 9 24 19 28 13 32 28 26 22.8

Int Divide Latency 29 10 26 16 24 32 41 32 20 10 10 43 8 23.2
Int Mult/Div 14 20 29 31 10 23 27 24 33 36 18 26 15 23.5

L2 Cache Associativity 23 19 14 19 32 28 5 39 37 18 42 21 12 23.8
I-TLB Latency 33 18 24 18 37 30 30 16 21 32 11 29 18 24.4

Instruction Fetch Queue Entries 43 13 27 30 26 20 18 37 9 25 23 34 14 24.5
Branch Misprediction Penalty 11 23 42 21 6 43 20 34 11 22 39 37 23 25.5

FP ALUs 34 11 31 15 34 17 40 22 26 37 13 42 13 25.8
FP Divide Latency 22 9 35 17 30 21 38 15 43 38 17 39 11 25.8
I-TLB Page Size 42 39 8 37 36 40 7 17 12 26 28 14 39 26.5

L1 D-Cache Associativity 13 38 17 34 18 41 34 33 14 15 35 15 42 26.8
I-TLB Associativity 24 27 37 25 17 31 42 13 29 30 21 33 22 27.0
L2 Cache Block Size 25 43 16 38 31 7 35 27 7 35 38 13 40 27.3
BTB Associativity 21 21 36 32 11 33 17 31 34 43 27 35 25 28.2

D-TLB Associativity 40 32 25 26 22 35 26 26 18 33 26 30 35 28.8
FP ALU Latencies 32 16 38 41 38 11 22 30 23 27 30 40 29 29.0

Memory Ports 39 31 41 24 27 15 16 41 5 42 29 41 27 29.1
I-TLB Size 35 34 28 35 20 37 19 18 31 34 34 27 31 29.5

Dummy Factor #2 27 42 21 39 35 14 13 35 41 28 43 18 30 29.7
FP Mult/Div 41 22 43 40 40 19 28 38 27 31 31 19 20 30.7

Int Multiply Latency 30 41 39 36 14 26 29 21 15 41 37 32 41 30.9
FP Square Root Latency 38 30 40 33 33 5 25 42 42 24 24 38 37 31.6

L1 I-Cache Latency 26 26 32 42 28 38 21 40 38 40 36 25 33 32.7
Return Address Stack Entries 28 33 33 27 42 25 36 25 39 39 33 36 32 32.9

Dummy Factor #1 19 37 30 43 25 36 43 43 35 23 40 24 36 33.4

Second, the effect that each benchmark has on the processor can be clearly seen. The

98

“effect” that a benchmark has on the processor can be defined as the performance

bottlenecks that are present in the processor when running that program. For example,

for a compute intensive benchmark, the number of functional units will probably be a

performance bottleneck for that processor. On the other hand, for a memory intensive

benchmark, the sizes of the L1 D-Cache and the L2 Cache may be the performance

bottlenecks.

In this case, for mesa, since the ranks for the L1 I-Cache size, associativity, and block

size are lower than or similar to the ranks for the L1 D-Cache size, associativity, and

block size, respectively, the performance of the instruction cache is more of a limiting

factor than the performance of the data cache. The miss rates for the L1 I-Cache and the

L1 D-Cache validate this result. When using a 32-byte cache block, the miss rate of the

L1 I-Cache is similar to or higher than the miss rate of the L1 D-Cache. Therefore, it is

not surprising to see that the L1 I-Cache parameters are generally more significant.

Third, several parameters have surprisingly low ranks in some benchmarks. For

example, the FP square root latency in art has a rank of five. Since art does not have a

significant number of FP square root instructions, its rank does not appear to be

consistent with its intuitive significance. However, what the rank does not show is that

the magnitude of the effect for this parameter is much smaller than magnitudes of the

effects for the four most significant parameters. In other words, while ranking the

parameters for each benchmark provides a basis for comparison across benchmarks, it

cannot be used as the sole arbiter in concluding the significance of a parameter’s impact

since the rank does not represent the magnitude of the effect.

Finally, Table 6.3.1.1 shows that the L1 D-Cache parameters (size, associativity, block

size, and latency) are not as significant as one would expect. The lowest ranks for the L1

D-Cache size, associativity, block size, and latency are 7 (twolf), 13 (gzip), 9 (art), and 5

(vortex), respectively. Given the amount of effort that the computer architecture

community has put into improving memory performance, one would expect that the L1

99

D-Cache parameters would have much lower ranks. Therefore, the key question is: What

are not the L1 D-Cache parameters more significant?

One potential reason is that the specific input set that is used for these benchmarks does

not adequately stress the memory hierarchy. When using the large input set, the L1 D-

Cache miss rates for those benchmarks are much lower than when using the reference

input set [Yi02-2] since the reference input set usually has a much larger memory

footprint. Therefore, since the high and low values for the L1 D-Cache parameters were

based on the values present in commercial processors and were not downsized to account

for the smaller memory footprint, the cache miss rates are subsequently lower. One

consequence of the lower-than-expected cache miss rates is that the L1 D-Cache

parameters have less impact on the performance (i.e. higher rank).

To minimize the effect of using an input set that produces a smaller-than-expected

memory footprint, one solution is to use smaller values for the L1 D-Cache and L2 Cache

size and associativity. Therefore, to determine how much of an effect that the lower

cache miss rates have on ranking of the cache parameters, the low value of the L1 D-

Cache size was reduced from 4 KB to 1 KB while the low value of the L2 Cache size was

reduced from 256 KB to 64 KB. The associativities of both caches were not reduced

since they were at the absolute minimum value (1-way).

Table 6.3.1.2 shows parameters in descending order of significance when using the

reduced cache size configurations.

Table 6.3.1.2 show that reducing the sizes of the L1 D-Cache and the L2 Cache to

account for using a reduced input set significantly changes the effect that the memory

parameters have on the performance. The sums-of-ranks for the L1 D-Cache size, L1 D-

Cache associativity, the L2 Cache size, and the L2 Cache associativity decreases by 71,

86, 86, and 137, respectively. Accordingly, the importance of these four parameters also

increases. The L1 D-Cache increases from 13th most important parameter to the 12th, the

L1 D-cache associativity changes from 29th to 17th, the L2 Cache size increases from 7th

100

to 2nd, and the L2 Cache associativity changes from 22nd to 8th. In other words, these four

parameters have a much larger effect on the performance when the cache sizes are

downsized to compensate for the smaller memory footprint.

Table 6.3.1.2: Plackett and Burman Design Results for All Processor

Parameters; Ranked by Significance and Sorted by the Average Sum-of-

Ranks; Reduced Cache Sizes
Parameter gzip vpr-Place vpr-Route gcc mesa art mcf equake ammp parser vortex bzip2 twolf Ave

ROB Entries 2 4 2 7 3 3 3 3 6 3 7 1 5 3.8
L2 Cache Size 1 8 1 2 19 1 1 5 2 1 3 2 6 4.0

L2 Cache Latency 6 2 5 3 2 16 5 2 12 4 2 7 2 5.2
Memory Latency First 4 9 3 4 21 2 2 6 1 2 4 4 7 5.3

Int ALUs 5 10 6 9 4 33 6 8 19 8 11 3 10 10.2
L1 I-Cache Size 7 1 15 1 1 27 17 1 36 17 1 25 1 11.5

L1 D-Cache Latency 11 6 10 8 10 17 30 7 42 7 9 5 8 13.1
L2 Cache Associativity 10 20 9 6 26 4 9 10 38 5 8 13 14 13.2
L1 I-Cache Block Size 19 3 41 5 15 8 26 4 10 12 5 22 4 13.4

Branch Predictor 9 7 8 11 5 34 25 9 4 6 35 12 9 13.4
Memory Bandwidth 13 30 13 10 38 7 4 12 3 9 13 10 17 13.8

L1 D-Cache Size 8 5 4 14 41 6 20 19 26 16 6 14 3 14.0
LSQ Entries 20 13 12 13 14 23 35 15 17 27 10 6 11 16.6

Instruction Fetch Queue Entries 17 18 18 22 24 9 11 27 9 14 40 18 24 19.3
FP Multiply Latency 26 12 21 12 20 28 33 11 23 26 14 24 13 20.2

L1 D-Cache Associativity 12 37 19 24 16 12 24 14 14 10 31 11 39 20.2
L1 I-Cache Associativity 3 33 14 17 9 43 19 35 16 24 12 9 32 20.5

L2 Cache Block Size 14 38 7 31 27 36 7 23 7 18 29 8 33 21.4
L1 D-Cache Block Size 16 42 34 20 17 10 29 13 29 11 42 27 34 24.9

BTB Entries 18 22 31 27 8 31 39 16 22 21 36 16 40 25.2
I-TLB Page Size 33 31 11 42 34 18 15 28 13 41 21 19 21 25.2

Dummy Factor #2 23 36 16 23 32 26 22 26 43 20 25 17 23 25.5
Int Mult/Div 25 16 27 39 11 15 40 34 33 29 18 41 15 26.4

Dummy Factor #1 22 43 29 26 29 13 21 18 35 13 38 21 35 26.4
FP ALUs 32 11 23 33 33 11 36 43 25 32 16 39 12 26.6

D-TLB Size 40 41 36 36 28 14 10 17 28 22 26 15 36 26.8
D-TLB Associativity 28 17 25 25 23 32 42 33 18 38 19 31 20 27.0
FP ALU Latencies 21 24 32 15 39 21 23 41 24 15 30 29 41 27.3

FP Square Root Latency 31 26 43 43 36 5 12 29 41 19 17 26 31 27.6
Int Divide Latency 34 14 42 29 25 29 41 25 20 23 20 42 16 27.7

I-TLB Size 30 25 17 16 22 37 27 40 32 43 15 38 19 27.8
FP Mult/Div 27 35 33 18 37 22 28 31 27 25 22 20 37 27.8

Branch Misprediction Penalty 41 40 24 30 6 24 8 39 11 36 27 35 42 27.9
Speculative Branch Update 15 27 40 40 7 41 38 22 8 37 32 30 26 27.9

Memory Ports 24 39 20 37 30 20 14 38 5 30 39 28 43 28.2
Int Multiply Latency 39 32 28 21 13 40 31 42 15 42 24 37 18 29.4

Return Address Stack Entries 43 28 37 19 43 38 16 24 39 31 23 33 22 30.5
FP Divide Latency 37 15 22 32 35 35 32 20 40 35 34 36 28 30.8
L1 I-Cache Latency 38 19 30 38 31 19 43 32 37 28 28 32 27 30.9
I-TLB Associativity 29 34 35 34 18 30 34 21 31 33 41 34 29 31.0
BTB Associativity 42 29 26 35 12 25 18 37 34 34 37 43 38 31.5
Int ALU Latencies 36 21 38 28 42 42 13 36 30 39 43 23 25 32.0

I-TLB Latency 35 23 39 41 40 39 37 30 21 40 33 40 30 34.5

Another reason that the L1 D-Cache parameters are not more significant is that the

memory hierarchy of sim-outorder tends to overestimate the memory performance since

it does not model memory contention. In addition, sim-outorder has a shorter-than-

normal pipeline, does not partition the execution core, does not replay traps, and has

fewer pipeline flushes. The net effect of these factors is that the average IPC “error” of

SimpleScalar for eight selected SPEC 2000 benchmarks is 36.7% [Desikan01]. Given

this rather large margin of error, the unrealistic memory behavior, and the smaller-than-

101

expected memory footprint, it is not too surprising to see that the ranks of the L1 D-

Cache parameters are not as low as expected.

The results in this section illustrate how a Plackett and Burman design can be used to

identify the key processor parameters, which is very useful when the computer architect

is trying to select processor parameters values. In this example, there are 10 key

processor parameters (out of 41), with the number of ROB entries and the L2 Cache

Latency being the two most important.

6.3.2. Analysis of Benchmarks for Benchmark Selection

The fourth step of the simulation process is benchmark selection. As described in

Chapter 4, a potential pitfall in choosing benchmarks is that the architect may

inadvertently choose a set of the benchmarks that are not representative of the target

applications. One way of avoiding this problem is to understand the effect that each

benchmark has on the processor in greater detail and then to select benchmarks that are

dissimilar. Two benchmarks are defined to be similar if they have a similar effect on the

processor.

Starting with the results of the Plackett and Burman design, the first step in determining

whether two benchmarks have similar effects on the processor is to calculate the

Euclidean distance between all possible pair-wise combinations of benchmarks. Since

the Plackett and Burman design results for each benchmark is simply a vector of ranks,

where each value in the vector corresponds to the rank for that parameter, the formula for

computing the Euclidean distance is simply:

Distance = [(x1-y1)
2 + (x2-y2)

2 + … + (xn-1-y n-1)
2 + (x n-y n)

2]½

In this formula, n is the number of parameters while X = [x1, x2, … , xn-1, xn] and Y = [y1,

y2, … , yn-1, yn] are the vector of ranks that represent benchmarks X and Y, respectively.

102

For example, the Euclidean distance between gzip and vpr-Place, using the ranks from

Table 6.3.1.1, is as follows:

Distance = [(1-4)2 + (4-2)2 + … + (28-33)2 + (19-37)2]½ = [8058]½ = 89.8

In the second step, the benchmarks were clustered together based on their Euclidean

distances. And in the third step, the final clustering tree is plotted. Figure 6.3.2.1 shows

the output of the cluster analysis for the benchmarks and input sets given in Table 6.4.3.

Figure 6.3.2.1: Cluster Analysis Results (i.e. Dendrogram) for the Large

MinneSPEC Input Set

In Figure 6.3.2.1, the benchmarks are arranged along the x-axis while the y-axis

represents the level of dissimilarity between any two benchmarks (or group of

benchmarks). Whenever two benchmarks are connected by a horizontal line, that means

at that level of dissimilarity and higher, those two benchmarks are considered to be

similar. The level of dissimilarity is simply the Euclidean distance. For example, since

vpr-Route and twolf are connected together at a dissimilarity of 35.19, for dissimilarities

(or Euclidean distances) less than 35.19, those two benchmarks are categorized into

103

separate groups. However, when the level of dissimilarity exceeds 35.19, they are

categorized into the same group. All benchmarks in the same group are considered to be

similar.

The first step in selecting a final group of benchmarks to simulate from the dendrogram is

to draw a horizontal line at a dissimilarity of 0. Then the horizontal line should be moved

up until it the number of vertical lines that it intersects matches the maximum number of

benchmarks that can be simulated. The number of intersecting vertical lines represents

the number of groups that the benchmarks have been classified into. At that level of

dissimilarity, all benchmarks within the same group are considered to be similar while

any benchmark in another group is considered to be dissimilar. The final step in the

benchmark selection process is to select one benchmark from each group to form the final

set of benchmarks.

For example, assume that the architect can simulate a maximum of eight benchmarks.

Therefore, the 13 benchmarks need to be categorized into eight different groups. From a

dissimilarity of 0 to dissimilarity of 35.18, the 13 benchmarks are in 13 different groups.

From 35.19 to 45.73, the 13 benchmarks are in 12 different groups because vpr-Place and

twolf are categorized into the same group. From 45.74 to 54.58, the 13 benchmarks are in

11 different groups after vpr-Route and bzip2 are categorized together. This process

continues until the 13 benchmarks are categorized into desired number of different

groups. Table 6.3.2.1 shows the final categorization with eight groups.

Table 6.3.2.1: Example of Benchmark Selection, Choosing Eight

Benchmarks from Thirteen

Group Benchmarks Final Set
I gzip, mesa gzip
II vpr-Place, twolf vpr-Place
III vpr-Route, parser, bzip2 vpr-Route
IV gcc, vortex gcc
V art art
VI mcf mcf
VII equake equake
VIII ammp ammp

104

The middle column of Table 6.3.2.1 shows the benchmarks in each group while the

rightmost column shows the benchmark that were selected from each group to form the

final set.

The final set of benchmarks consists of five integer benchmarks (gzip, vpr-Place, vpr-

Route, gcc, and mcf) and three floating-point benchmarks (art, equake, and ammp). In

addition, two of the benchmarks (art and mcf) have very high cache miss rates (over 20%

for a 32 KB, 2-way associative cache) while the other six have comparatively low miss

rates (less than 5% for a 32 KB, 2-way cache). Therefore, the final set of benchmarks

consists of benchmarks that would come from different groups when categorizing

benchmarks using existing methods (integer versus floating-point, etc.).

Finally, it is important to note that it may be useful to consider other factors when

selecting a benchmark from each group. In this example, one reason to choose gzip

instead of mesa from Group I, is because gzip has a much lower instruction count

although those two benchmarks are statistically similar. Similarly, one reason to choose

vpr-Route over parser and bzip2 from Group III is to match the choice of vpr-Place from

Group II.

The results in this section illustrate how a Plackett and Burman design can be used to

help the computer architect select a set of statistically different benchmarks. In

particular, these results illustrated how eight benchmarks could be selected from the

candidate list of 13 SPEC 2000 benchmarks by first classifying them into eight groups

and then selecting one benchmark from each group.

6.3.3. Analysis of the Effect of Processor Enhancements

The sixth and final step of the simulation process is analyzing the effect of an

enhancement. To illustrate how a Plackett and Burman design can be used in this way,

this technique was used to analyze the effects that Instruction Precomputation and

105

Simplifying and Eliminating Trivial Computations had on the processor. Table 6.3.3.1

presents the Plackett and Burman design results for Instruction Precomputation while

Table 6.3.3.2 does the same for Simplifying and Eliminating Trivial Computations.

Table 6.3.3.1 shows the results for Instruction Precomputation for Profile B, Run A using

a 128-entry PT. Table 6.3.3.1 represents the “after” case while Table 6.3.1.1 represents

the “before” case, that is, the unenhanced processor.

Table 6.3.3.1: Plackett and Burman Design Results for All Processor

Parameters When Using Instruction Precomputation; Ranked by

Significance and Sorted by the Average Sum-of-Ranks
Parameter gzip vpr-Place vpr-Route gcc mesa art mcf equake ammp parser vortex bzip2 twolf Ave

ROB Entries 1 4 1 4 3 2 2 3 6 1 4 1 4 2.8
L2 Cache Latency 4 2 4 2 2 4 4 2 13 3 2 8 2 4.0
Branch Predictor 2 5 3 5 5 28 11 8 4 4 16 7 5 7.9

L1 D-Cache Latency 7 6 5 7 11 8 14 5 40 7 5 4 6 9.6
L1 I-Cache Size 5 1 12 1 1 12 38 1 36 8 1 15 1 10.2

Int ALUs 6 8 8 9 8 29 9 13 20 6 9 3 9 10.5
L2 Cache Size 9 35 2 6 22 1 1 6 2 2 6 2 43 10.5

L1 I-Cache Block Size 15 3 20 3 14 10 32 4 10 11 3 20 3 11.4
Memory Latency First 35 25 6 8 18 3 3 7 1 5 7 6 27 11.6

LSQ Entries 13 14 9 10 15 40 10 9 17 9 8 5 10 13.0
D-TLB Size 21 28 11 24 25 13 12 10 25 14 25 10 24 18.6

Speculative Branch Update 8 20 25 29 7 16 39 11 8 20 21 22 19 18.8
L1 I-Cache Associativity 3 41 15 28 6 34 23 28 16 17 11 9 21 19.4

L1 D-Cache Size 18 7 10 12 42 19 8 35 32 21 13 32 7 19.7
FP Multiply Latency 31 12 22 11 19 24 15 22 24 28 14 24 18 20.3
Memory Bandwidth 33 36 13 14 43 6 6 31 3 12 20 11 38 20.5

BTB Entries 10 23 19 20 9 41 31 20 22 19 19 16 34 21.8
Int ALU Latencies 16 15 18 13 40 22 33 14 31 16 41 12 16 22.1

L1 D-Cache Block Size 17 30 34 22 16 9 24 19 26 13 33 25 26 22.6
Int Divide Latency 30 10 26 17 24 33 40 33 19 10 10 41 8 23.2

L2 Cache Associativity 23 19 14 19 33 27 5 39 37 18 42 21 12 23.8
Int Mult/Div 14 21 30 31 12 23 27 23 33 37 18 27 15 23.9

I-TLB Latency 32 17 24 18 34 30 30 16 21 33 12 29 17 24.1
Instruction Fetch Queue Entries 43 13 27 30 23 20 19 37 9 25 23 34 14 24.4
Branch Misprediction Penalty 11 24 41 21 4 43 20 32 11 22 39 35 23 25.1

FP Divide Latency 20 9 36 16 28 21 37 15 43 38 17 38 11 25.3
FP ALUs 34 11 31 15 38 17 41 24 27 36 15 43 13 26.5

I-TLB Page Size 42 38 7 38 39 39 7 17 12 26 28 14 39 26.6
L1 D-Cache Associativity 12 39 17 35 17 42 34 34 14 15 36 17 42 27.2

L2 Cache Block Size 25 43 16 37 31 7 35 27 7 35 38 13 40 27.2
I-TLB Associativity 26 27 38 25 20 31 42 12 29 30 22 33 22 27.5
BTB Associativity 22 18 35 32 10 32 17 30 34 43 27 36 25 27.8

D-TLB Associativity 40 32 23 26 27 35 25 26 18 32 26 28 35 28.7
Memory Ports 39 31 39 23 26 15 16 40 5 42 30 40 29 28.8

FP ALU Latencies 37 16 37 41 37 11 21 29 23 27 29 42 28 29.1
I-TLB Size 36 34 28 34 21 37 18 18 30 34 34 30 32 29.7

Dummy Factor #2 28 42 21 39 32 14 13 36 42 29 43 18 30 29.8
Int Multiply Latency 29 40 42 36 13 26 29 21 15 41 35 31 41 30.7

FP Mult/Div 41 22 43 40 41 18 28 38 28 31 31 19 20 30.8
FP Square Root Latency 38 29 40 33 35 5 26 43 41 24 24 39 37 31.8

Return Address Stack Entries 27 33 33 27 36 25 36 25 39 40 32 37 31 32.4
L1 I-Cache Latency 24 26 32 42 29 38 22 41 38 39 37 26 33 32.8
Dummy Factor #1 19 37 29 43 30 36 43 42 35 23 40 23 36 33.5

Comparing these two tables yields two conclusions about the effect that Instruction

Precomputation has on the processor. First of all, the same parameters that were

significant for the base processor are also significant for the processor with Instruction

106

Precomputation. While Instruction Precomputation changes the relative ordering of the

significant parameters, with respect to each other, it does not change which parameters

have the greatest significance.

Second, of the significant parameters, the parameter that has the biggest change in its

overall effect (defined as the biggest change in its average sum-of-ranks) is the number of

integer ALUs. Instruction Precomputation changes its average sum-of-ranks from 9.1 in

the base processor to 10.5. This result is intuitively reasonable since most of the

instructions that Instruction Precomputation eliminates would have executed on the

integer ALUs. Therefore, by using Instruction Precomputation, the impact of the number

of integer ALUs on the processor’s performance decreases in significance.

Although these results show that Instruction Precomputation improves the processor’s

performance by reducing functional unit contention, it also improves the processor’s

performance by decreasing the execution latency of redundant computations. However,

since the base SimpleScalar processor has a short, fixed-length pipeline, this latter effect

appears to be relatively unimportant.

Table 6.3.3.2 shows the results for Simplifying and Eliminating Trivial Computations

when using the realistic base processor configuration. Tables 6.3.1.1 and 6.3.3.2

represent the before and after cases, respectively.

Simplifying and Eliminating Trivial Computations has a similar effect on all processor

parameters. That is, the performance bottlenecks in the base processor do not get

substantially better or worse when hardware to exploit trivial computations is added to

the processor. There are two reasons to support this conclusion. First, the order of the

ten most significant parameters is the same as the base processor. Since their sums-of-

ranks are nearly identical, this enhancement has a very similar on the most important

processor parameters.

107

Second, there is relatively little difference between the average sums-of-ranks for the

other parameters. The maximum difference between the average sums-of-ranks for a

parameter with and without adding the trivial computation exploitation hardware is 1.3.

Although this difference rivals the change in the average sum-of-ranks for the Number of

Integer ALUs when Instruction Precomputation is added to the base processor, this

difference is less meaningful because it is a smaller percentage of the average sum-of-

ranks for that parameter. In other words, since those parameters are very insignificant to

being with, large changes in their average sums-of-ranks do not imply that the

enhancement has a large effect on that parameter.

Table 6.3.3.2: Plackett and Burman Design Results for All Processor

Parameters When Simplifying and Eliminating Trivial Computations;

Ranked by Significance and Sorted by the Average Sum-of-Ranks
Parameter gzip vpr-Place vpr-Route gcc mesa art mcf equake ammp parser vortex bzip2 twolf Ave

ROB Entries 1 4 1 4 3 2 2 3 6 1 4 1 4 2.8
L2 Cache Latency 4 2 4 2 2 4 4 2 13 3 2 8 2 4.0
Branch Predictor 2 5 3 5 5 27 11 8 4 4 16 7 5 7.8

Int ALUs 6 8 7 8 6 29 9 6 19 7 9 2 9 9.6
L1 D-Cache Latency 7 6 5 7 12 8 14 5 40 6 5 6 6 9.8

L1 I-Cache Size 5 1 12 1 1 11 38 1 36 8 1 16 1 10.2
L2 Cache Size 9 40 2 6 21 1 1 7 2 2 6 3 43 11.0

L1 I-Cache Block Size 16 3 20 3 15 10 32 4 10 11 3 21 3 11.6
Memory Latency First 36 28 6 9 20 3 3 9 1 5 7 5 27 12.2

LSQ Entries 12 16 9 10 14 43 10 10 17 10 8 4 10 13.3
Speculative Branch Update 8 18 26 29 7 16 39 13 8 20 21 20 18 18.7

L1 D-Cache Size 18 7 11 12 43 18 8 25 31 21 12 33 7 18.9
D-TLB Size 20 27 10 23 30 13 12 12 25 14 27 11 25 19.2

FP Multiply Latency 31 11 22 11 19 24 15 17 24 26 14 24 17 19.6
Memory Bandwidth 37 41 13 14 39 6 6 22 3 12 20 12 39 20.3

L1 I-Cache Associativity 3 38 16 28 8 34 23 43 16 16 13 9 21 20.6
BTB Entries 10 22 18 20 9 42 30 15 22 18 19 17 34 21.2

Int Divide Latency 29 10 24 17 25 33 40 21 20 9 10 43 8 22.2
L1 D-Cache Block Size 17 29 31 22 16 9 24 14 27 13 34 28 26 22.3

Int ALU Latencies 15 14 19 13 42 21 33 18 30 17 43 10 16 22.4
L2 Cache Associativity 23 15 14 19 33 28 5 38 37 19 39 22 13 23.5

Branch Misprediction Penalty 11 23 43 21 4 40 20 19 11 22 42 36 23 24.2
Int Mult/Div 14 24 30 31 11 23 27 34 33 37 17 26 14 24.7

FP Divide Latency 21 9 34 16 26 22 37 11 43 38 18 38 11 24.9
Instruction Fetch Queue Entries 43 13 27 30 27 20 18 40 9 25 23 35 15 25.0

I-TLB Latency 32 20 23 18 37 30 31 24 21 33 15 27 19 25.4
L1 D-Cache Associativity 13 39 15 34 18 41 34 23 14 15 37 15 41 26.1

FP ALUs 34 12 33 15 31 17 41 32 26 36 11 41 12 26.2
BTB Associativity 22 19 37 32 10 32 17 20 34 43 26 34 24 26.9
I-TLB Page Size 42 35 8 38 36 39 7 26 12 27 29 14 38 27.0

I-TLB Associativity 25 25 36 25 17 31 42 16 29 29 22 32 22 27.0
L2 Cache Block Size 26 42 17 37 32 7 35 41 7 35 36 13 40 28.3

Memory Ports 40 30 41 24 28 14 16 29 5 42 31 40 29 28.4
D-TLB Associativity 39 33 25 26 22 35 25 37 18 32 25 29 36 29.4
FP ALU Latencies 33 21 38 41 38 12 21 28 23 30 30 42 28 29.6
Dummy Factor #2 28 36 21 39 34 15 13 42 41 28 40 18 32 29.8

FP Mult/Div 41 17 42 40 40 19 28 39 28 31 32 19 20 30.5
I-TLB Size 35 31 28 35 23 36 19 27 32 34 33 30 33 30.5

FP Square Root Latency 38 32 39 33 35 5 26 33 42 24 24 39 37 31.3
Int Multiply Latency 30 43 40 36 13 26 29 31 15 41 38 31 42 31.9

Dummy Factor #1 19 37 29 43 24 37 43 30 35 23 41 23 35 32.2
L1 I-Cache Latency 24 26 35 42 29 38 22 36 38 39 35 25 31 32.3

Return Address Stack Entries 27 34 32 27 41 25 36 35 39 40 28 37 30 33.2

108

The results in this section illustrate how a Plackett and Burman design can be used to

help the computer architect analyze the effect that a processor enhancement (hardware or

software) has on the processor. The two examples that were given examined the effect

that Instruction Precomputation and that Simplifying and Eliminating Trivial

Computations had on the processor. In particular, the results show that Instruction

Precomputation improves the processor’s performance by decreasing the amount of

functional unit contention while adding hardware to exploit trivial computations does not

significantly create or relieve any performance bottlenecks.

6.3.4. Summary

The results in this section illustrate how a Plackett and Burman design can be used to

improve simulation methodology. More specifically, a computer architect can use a

Plackett and Burman design to identify the most significant processor parameters, which

is important to know when choosing parameter values. Those results can also be used

categorize benchmarks into groups, which is helpful when choosing benchmarks for

simulations. Finally, the architect can use a Plackett and Burman design to determine the

effect of a processor enhancement by comparing the sums-of-ranks for each processor

parameter with and without the processor enhancement.

109

Chapter 7

Related Work

The scope of previous work that is related to this dissertation extends from work that has

focused on value locality, value reuse and prediction, and improving processor

performance by exploiting trivial computations to simulation methodology and the use of

statistics in computer architecture research.

7.1. Value Locality

Value locality is the “likelihood of the recurrence of a previously seen value within a

storage location” in a processor [Lipasti96-1]. In other words, value locality is the

probability that an instruction produces the same output value.

Since their output value is constant, redundant computations exhibit value locality. As

defined in Chapter 1, a redundant computation is a computation that the processor had

performed earlier in the program. However, in this particular case, since their input

values are constant (which along with the operation produces a constant output value),

these instructions specifically exhibit input value locality. The difference between input

and “normal” (output) value locality is that in the former, repetitive and constant input

110

values are the reason for the repetitive output values while in the latter, the input values

may differ while the output value is repetitive.

Section 7.1.1 summarizes the previous work that examined the amount of redundant

computations that are present in SPEC benchmarks while Sections 7.2.1 and 7.2.2

describe solutions from the two major approaches of exploiting value locality: value

reuse and value prediction.

7.1.1. Redundant Computations

Sodani and Sohi analyzed the amount of instruction repetition (amount of redundant

computation at the local-level) in the integer benchmarks of the SPEC 95 benchmark

suite [Sodani98]. Their results showed that 56.9% (compress) to 98.8% (m88ksim) of the

dynamic instructions were repeated (i.e. had the same inputs – and, of course, produced

the same result – as an earlier instance of the instruction). Therefore, in the case of

m88ksim, almost all of the dynamic instructions were redundant with another dynamic

instruction. This shows that in typical programs, such as those from the SPECint95

benchmark suite, a very large percentage of the computations are redundant.

Their results also showed that, of the static instructions that execute more than once, most

of the repetition in the dynamic instructions is due to a small sub-set of the dynamic

instructions. More specifically, with the exception of m88ksim, less than 20% of the

static instructions that execute at least twice are responsible for over 90% of the dynamic

instructions that are redundant. For m88ksim, those static instructions are responsible for

over 50% of the instruction repetition.

However, it is important to reiterate that this paper only analyzed the amount of

redundant computation present at the local-level.

Gonzalez et al [Gonzalez98] analyzed the amount of instruction repetition in the integer

and floating-point benchmarks of the SPEC 95 benchmark suite. Like [Sodani98], their

111

results were for instruction repetition at only the local-level. Their results showed that

53% (applu) to 99% (hydro2d) of the dynamic instructions were repeated. Furthermore,

the geometric means of all the benchmarks, the integer benchmarks only, and the

floating-point benchmarks only were 87%, 91%, and 83%, respectively. Consequently,

there is not a significant difference in the amount of instruction repetition between the

integer and floating-point benchmarks. Overall, their results confirmed the key

conclusion from [Sodani98], that there is a significant amount of instruction repetition

(local-level redundant computation) available in typical programs.

7.2. Value Reuse and Prediction

The two major techniques of exploiting value locality are value reuse (also called

instruction reuse and instruction memorization [Citron98]) and value prediction.

7.2.1. Value Reuse

As explained in Section 1.4, value reuse exploits redundant computations by storing the

opcode, input operand values, and output value for redundant computations into the value

reuse table (VRT). When the current instruction’s opcode and input operand values

match an opcode and input operand value in the VRT, the processor can bypass the

execution of that instruction and simply retrieve its output value from the VRT.

When exploiting local-level redundant computations, the PC is used as an index into the

VRT. However, when exploiting global-level redundant computations, some

combination of the opcode and input operand values are needed.

Sodani and Sohi [Sodani97] implemented a dynamic value reuse mechanism that

exploited local-level only value reuse and tested it with selected SPEC 92 and 95

benchmarks. Since their value reuse mechanism exploited local-level redundant

112

computations, they consequently indexed their value reuse table with each instruction’s

PC.

Their value reuse mechanism produced speedups of 0% to 17%, 2% to 26%, and 6% to

43% for a 32 entry, a 128 entry, and a 1024 entry, respectively, value reuse table. While

the speedups in that paper are comparable to those for Instruction Precomputation, given

in Section 6.1 of this dissertation, their approach needs additional hardware to

dynamically update the VRT and does not exploit global-level redundant computations,

as compared to Instruction Precomputation.

By contrast, Molina et al [Molina99] implemented a dynamic value reuse mechanism that

exploited value reuse at the both the global and local-levels. To test the performance of

their value reuse mechanism, they simulated selected integer and floating-point

benchmarks from the SPEC 95 benchmark suite. Their approach is very area-intensive

since it uses three separate value reuse tables to reuse global and local level computations

and memory instructions. As can be expected, their speedups are somewhat correlated to

the area used. For instance, their value reuse mechanism produced speedups of 3% to

25% with an average of 10% when using a 221 KB table. When the table area is reduced

to a more realistic 36 KB, the speedups dropped to a range of 2% to 15% with an average

of 7%. While their speedups are comparable to those presented in Chapter 6 of this

dissertation, to achieve a similar speedup, their approach requires approximately ten

times the area that Instruction Precomputation does (221 KB versus 26 KB).

Citron et al [Citron98, Citron00-1, Citron00-2] proposed using distributed value reuse

tables that are accessed in parallel with the functional units. This approach, called

memoziation, is best suited to bypass the execution of long latency instructions, e.g.

integer divide; floating-point multiply, divide, and square root. Since their mechanism

reduces the execution time of redundant computations to a single cycle, targeting only

long latency instructions maximizes the performance gain due to this approach. As a

result, although this mechanism produces speedups up to 20%, it is best suited for

benchmarks with a significant percentage of high-latency instructions, such as the

113

MediaBench benchmark suite. There are two key differences between this approach and

Instruction Precomputation. The first difference is that this approach uses distributed

memorization tables, each of are which are located adjacent next to a functional unit,

instead of a monolithic Precomputation Table. While smaller tables have a faster access

time, all entries across all tables may not be used. Consequently, some tables may be full

(and in the process of replacing entries) while other tables have empty entries. The other

key difference is that the processor can access the memoization tables only in the execute

stage while the VRT is usually accessed in the decode or issue stage. As a result, this

approach cannot reuse the computations for single cycle latency instructions since there is

no difference between the memoization table access latency and the execution latency for

those instructions. The effect of this difference is that there are fewer instructions for this

approach to reuse, as compared to value reuse, where all arithmetic, logical, and load

instructions can be reused.

Huang and Lilja [Huang98, Huang99] introduced basic block reuse, which is value reuse

at the basic block level. This approach uses the compiler to identify basic blocks where

the inputs and outputs were are relatively constant and stable. Then, at run-time, the

processor caches the inputs and outputs for those compiler-identified basic blocks after

they finish executing. Subsequently, before the next execution of that basic block, the

current inputs of that basic block are compared with all cached entries. If a match is

found, then the register file and memory are updated with the correct results. Otherwise,

the processor executes the basic block normally.

They showed that the average reused basic block ranged in size from 4.14 instructions

(wordcount) to 5.95 instructions (ijpeg). This approach produced speedups of 1% to 14%

with an average of 9%. The key difference between this approach and Instruction

Precomputation is in the level of granularity. Basic block reuses multiple instructions at

a time while Instruction Precomputation reuses one a time. However, the corresponding

hardware cost is higher; each basic block reuse table entry requires at least 60 bytes of

storage (as compared to 13 bytes for Instruction Precomputation).

114

In summary, the previous approaches produce comparable or lower speedups, as

compared to Instruction Precomputation, while consuming either a little more area or, in

some cases, an order of magnitude more area and while probably having a higher table

access time. The other key difference is that the previous approaches allow for dynamic

table replacement while Instruction Precomputation does not.

Azam et al [Azam97] proposed adding a dynamic reuse buffer and an extra pipeline stage

(to access the reuse buffer) to decrease the processor’s power consumption. Their results

showed that an eight-entry reuse buffer decreased the power consumption by up to 20%

while a 128-entry reuse buffer decreased the power consumption by up to 60%. While

one of the goals of this solution is to decrease the power consumption while maintaining

the performance (i.e. the same execution time) of the base processor, since performance

numbers were not given in this paper, it is not clear if the performance goal was met.

Weinberg and Nagle [Weinberg98] proposed using value reuse to reduce the latency of

pointer traversals by caching the elements of the pointer chain. This approach reduced

the execution latency by up to 11.3%. However, this approach differs with Instruction

Precomputation in three respects: 1) It only targets pointers, 2) It uses dynamic

replacement, and 3) It consumes a very large amount of area (approximately 600 KB).

Finally, Gonzalez et al [Gonzalez98] measured the maximum performance potential of

local-level value reuse, given an infinite VRT, a zero-cycle reuse latency (the number of

cycles need to access the VRT and forward the output value to the redundant instruction),

and a processor without any structural hazards. Their results showed that, for these

benchmarks and for the given hardware assumptions, the average overall speedup is 18.7

(i.e. 1770%). The maximum possible speedup ranges from 1.5 (applu) to 2231 (turb3d).

7.2.2. Value Prediction

Value prediction is another microarchitectural technique that exploits value locality. The

value predication hardware predicts the output values of future instances of each static

115

instruction based on its past values. After the predicting the output value, the processor

forwards that predicted value to any dependent instructions and then speculatively

executes the dependent instructions based on the predicted value. To verify the

prediction, the processor has to execute the predicted instruction normally. If the

prediction is correct (i.e. the predicted value matches the actual value), then the processor

resumes normal (non-speculative) execution and can commit the values of the

speculatively executed dependent instructions. If the prediction is incorrect, then all of

the dependent instructions need to be squashed and re-executed. This is the key

difference between value reuse and value prediction; namely, that value prediction is

speculative while value reuse is not.

7.2.2.1. Simple Value Predictors

Lipasti et al [Lipasti96-1, Lipasti96-2] introduced the concept of value locality and a

means – last value prediction – to exploit it. Last value prediction stores the last output

value of each static instruction into the value prediction table. Upon encountering the

next instance of that static instruction, the processor uses the last output value as the

predicted value. They showed that the average speedup for the last value prediction of

load instructions is 6%, with a maximum of 17% [Lipasti96-1]. Meanwhile, the average

speedup for arithmetic and load instructions is 7%, with a maximum of 54% [Lispasti96-

2].

However, the accuracy of last value prediction is very poor when trying to predict the

values of computations such as incrementing the loop induction variable. Therefore, to

improve the prediction accuracy of last value prediction for these and similar

computations, Gabby and Mendelson [Gabbay98] proposed another value predictor: the

stride-value value predictor. By adding the difference of the last two output values (i.e.

the stride) for that instruction to the last value for that instruction, this value predictor is

able to accurately predict the output values for loop induction variables. Note that when

the stride value equals to zero, the stride value predictor functions as a last value

predictor.

116

For the integer benchmarks of the SPEC 95 benchmark suite, they showed that, for ALU

instructions, the prediction accuracy of the last and stride value predictors were 52.8%

and 61.1%, respectively. The improved prediction accuracy subsequently increases the

amount of ILP significantly. For example, for m88ksim, stride value prediction increases

the amount of ILP from 7 IPC to 34 IPC while last value prediction only increases the

amount of ILP to 13 IPC. (Note: Speedup results were not given in this paper, only the

increase in the amount of ILP.)

Although stride value prediction produces a higher prediction accuracy and a larger

amount of ILP, as compared to last value prediction, the two predictors are fundamentally

the same. Consequently, for more complex output value patterns such as 1, 4, 7, 9, 1, 4,

7, 9, … , 1, 4, 7, 9, etc., both value predictors have very poor performance. To address

this shortcoming, Sazeides and Smith [Sazeides97] proposed the finite-context method

(FCM) predictor. This two-level predictor stores the last n output values into the first

level of the predictor while the hardware in the second level to chooses between those

values. Consequently, this predictor is able to capture and accurately predict more

complex, but regular patterns.

Their results showed that the prediction accuracy of the last value predictor is 23% to

61%, with an average of 40%, while the prediction accuracy of the stride value predictor

is 38% to 80%, with an average of 56% for selected SPECint95 benchmarks. By

comparison, the prediction accuracy of the FCM predictor is 56% to 90%, with an

average of 78%. Since higher prediction accuracies translate into higher performance,

combining two predictors together, such as the stride and FCM value predictors, should

yield even higher prediction accuracy, and subsequently, performance. These hybrid

value predictors are the subject of the next sub-section.

7.2.2.2. Complex (Hybrid) Value Predictors

For their hybrid value predictor, Rychlik et al [Rychlik98] combined an enhanced stride

value predictor together with a FCM value predictor. They enhanced the base stride

117

value predictor by adding second stride field. The first stride field stores the difference

between the last two output values while the second stride field stores the last stable

stride and is used in conjunction with the last output value to generate the predicted

value. The first stride field only updates the stable stride field if the last two stride values

are the same. For each instruction, both predictors make a prediction. The prediction

from the predictor with the higher confidence counter value is chosen as the predicted

value. In the case of a tie, the default choice is the FCM predictor.

For the SPEC 95 benchmarks, this hybrid value predictor achieved prediction accuracies

of 74% to 83% and speedups of 9% to 23%, for a realistic machine. Although these

prediction accuracies are not as high as those given in [Sazeides97], this hybrid value

predictor reduces the total number of predictions by only allowing “useful” instructions

into the value prediction table. A useful instruction is one which produces a value for a

dependent instruction when both instructions are in the instruction window. Furthermore,

these speedup results were enhanced by using a selective re-issue core, which only re-

issues dependent instructions (instead of all instructions after the dependent one).

The hybrid value predictor proposed by Wang and Franklin [Wang97] is very similar to

the predictor in [Rychlik98]. In this paper, the prediction from the FCM predictor is

chosen if its confidence counter is higher than the prediction threshold. If not, then the

prediction from the stride predictor is chosen, also if its confidence counter is higher than

the prediction threshold. If not, then no prediction is made. The prediction accuracy and

speedup results for this hybrid value predictor as similar to those shown by [Rychlik98].

7.3. Simplification and Elimination of Trivial Computations

The only previous work that focused directly on trivial computation is found in

[Richardson92]. In this paper, Richardson restricted the definition of trivial computations

to the following eight types: multiplications by 0, 1, and –1; certain divisions (X ÷ Y with

X = {0, Y, -Y}), and square roots of 0 and 1. To exploit these trivial computations,

118

Richardson proposed hardware that would eliminate the computations simply by setting

the output value to the appropriate value (0, 1, -1, or –X). The latency of this bypass was

assumed to be one cycle.

For the benchmarks from the SPECfp92 and Perfect Club benchmark suites, his results

showed that 0% to 7.3% of the instructions were trivial in these benchmarks. His results

showed that by eliminating these trivial computations, his proposed solution could

improve the processor’s performance by 2.1% for the SPEC benchmarks and 4.4% for

the Perfect Club benchmarks.

The three key differences between this work and this dissertation are the types of

benchmarks that were used, the scope of the definition of trivial computations, and how

the trivial computations were exploited. The first difference is that Richardson restricted

the definition of trivial computations to the above eight types while 26 types were defined

in Chapter 3. The second difference is that Richardson studied only floating-point

benchmarks (SPEC 92 and Perfect Club) while the results given in Chapter 6 are for a

mix of integer, floating-point, and multimedia benchmarks from the SPEC 2000 and

MediaBench benchmark suites. The third difference is that Richardson did not appear to

use a simulator to determine the performance of his proposed solution. As a result, his

speedup results do not account for pipeline effects. Instead of simplifying and

eliminating the trivial computations, Richardson only eliminated them because his

definition of trivial computations did not include the simplifiable ones. Furthermore,

even for the trivial computations that could be directly eliminated, he did not take

advantage of the early non-speculative scheduling.

Since Richardson did not increase the scope of trivial computations, the effects of the

first and third differences result in a lower percentage of speedup. On the other hand,

using only floating-point benchmarks and not including the effect of the processor’s

pipeline has the effect of somewhat over-inflating the speedup results. Despite this, for

similar processor configurations, the average speedup of 2% that he reported was much

lower than the 8.86% given in Chapter 6.

119

Finally, Richardson asserted that the lack of previous work on trivial computation was

not due to its novelty, but due to a lack of knowledge as to how often trivial computations

would occur.

Brooks and Martonosi [Brooks99] proposed two methods of reducing the operation’s bit

width to improve the processor’s performance or decrease its power consumption. They

noticed that for the SPEC and MediaBench benchmarks, more than 70% of all 64-bit

arithmetic operations required 32-bits or less. To decrease the processor’s power

consumption, 64-bit operations were converted into 32-bit operations. To improve the

processor’s performance, the functional units were modified to allow two 32-bit

operations to execute simultaneously.

Their results showed that by reducing the bit-width of the operation from 64 to 32 bits,

the power consumption of the integer arithmetic units decreased by over 50%. On the

other hand, executing two narrow-width operations on the same functional unit yields

speedups of 4.3% to 6.2% for the SPEC 95 benchmarks and 8.0% to 10.4% for the

MediaBench benchmarks.

7.4. Prior Work in Simulation Methodology

The related work in this section is divided into the following four categories: simulator

validation, reducing the simulation time, benchmark and input set characterization, and

processor parameter analysis.

7.4.1. Simulator Validation

The authors of several papers described their experiences when trying to validate the

performance of a simulator against a reference machine or instruction set architecture

(ISA). Black and Shen [Black98] iteratively improved the accuracy of their performance

120

model by comparing the cycle count of their simulator, which targeted a specific

architecture (in this case the Power PC 604), against the cycle count of the actual

hardware. Their results show that modeling, specification, and abstraction errors were

still present in their simulation model, even after a long period of debugging. In fact,

some of these errors could be revealed only after comparing the performance model to

the actual processor. As a result, their work showed the need for extensive, iterative

validation before the results from a performance model can be trusted.

Desikan et al [Desikan01] measured the amount of error, as compared to the Alpha

21264 processor, that was present in an Alpha version of the SimpleScalar simulator.

They defined the amount of error to be the difference in the simulated execution time and

the execution time of the processor itself. Their results showed that the simulators that

model a generic machine (such as SimpleScalar) generally report higher IPCs than

simulators that are validated against a real machine. In other words, a simulator that does

not target a specific architecture will generally report higher IPCs for the same

benchmarks as compared to a validated simulator that targets a specific architecture. This

result is not particularly surprising since it is likely that unvalidated, generic-architecture

simulators will tend to underestimate the complexity of the implementing certain

microarchitectural features that affect the clock period. On the other hand, unvalidated

simulators that targeted a specific machine usually underestimated the performance.

Gibson et al [Gibson00] described the types of errors that were present in the FLASH

simulator when compared to the custom-built FLASH multi-processor system. To

determine which errors were present in the FLASH simulator, they compared the

simulated execution time from the FLASH simulator against the actual execution time of

the FLASH processor. In addition, they tested several different versions of their

simulator to evaluate the accuracy versus simulation speed tradeoff of using a faster, but

less complex simulator instead of a slower, but more complex simulator. Their results

showed that most simulators can accurately predict the architectural trends if all of the

important components have been accurately modeled. They also showed that a faster,

less complex simulator that uses a scaling factor for the results often did a better job of

121

predicting a processor’s performance than a slower, more complex simulator. Finally,

their results showed that the margin of error (the percentage difference in the execution

time) of some simulators was more than 30%, which is higher than the speedups that are

often reported for specific architectural enhancements.

Collectively, [Desikan01, Gibson00] show that the results from unvalidated simulators

cannot be fully trusted and that any conclusions drawn from those results are suspect.

Glamm and Lilja [Glamm00] verified the functional correctness of a simulated ISA by

simultaneously executing the instructions from a program on a simulator and on the

targeted machine. Then, after each instruction, the simulated processor’s state was

compared to the real machine’s processor state. Any difference between the states

identified an error in the simulated ISA, which can then be fixed.

Cain et al [Cain02] measured the effect of the operating system and the effects of input

and output (I/O) on simulator accuracy. To accomplish this task, they integrated the

SimOS-PPC, an operating system that targets the PowerPC architecture, with SimMP, a

multiprocessor simulator. Their results showed that the lack of an operating system could

introduce errors as high as 100%. Furthermore, their results showed the potential for

error due to I/O if the additional memory traffic is not properly taken into account.

Overall, their results showed the need to integrate an operating system into the simulator

for increased simulator accuracy and precision.

7.4.2. Reducing the Simulation Time

As described in Section 1.9, simulators are the most important tool in computer

architecture research. The most accurate and detailed simulators are execution-driven,

cycle-accurate simulators, such as SimpleScalar. While this type of simulator fully

models all major processor components, they trade-off increased accuracy and detail for

slower simulation speed. The slow simulation speed can be further exacerbated by the

length of the benchmark and input set. For example, executing the ammp benchmark

122

from the SPEC 2000 benchmark suite with the reference input set requires simulating

approximately two trillion instructions. Therefore, the simulation time of this

benchmark with the reference input set on a MIPS R14000 processor (which simulates

this benchmark at 75,000 instructions per second) requires more than 308 days! As a

result, since it is virtually impossible to explore even a small fraction of the design space

with these long simulation times, the following papers have proposed different solutions

to reduce the simulation time.

The most obvious solution to reduce the simulation time is to modify the input set so that

that benchmark executes fewer instructions. However, the stipulation is that a benchmark

that uses the modified input set must have the same characteristics as when it is not using

the modified input set. Failure to uphold that stipulation defeats the purpose of using

benchmarks that are similar to “real-world” programs.

KleinOsowski and Lilja [KleinOsowski02] produced the MinneSPEC reduced input set

for the SPEC CPU 2000 benchmarks. Benchmarks that use MinneSPEC reduced input

sets ostensibly have reference-like characteristics (function-level execution patterns,

instruction mixes, and memory behaviors), albeit with a much shorter simulator time.

The input sets were reduced by modifying the command-line parameters, truncating the

input set, or creating a completely new input set. For each benchmarks, they tried to

create three reduced input sets: small, medium, and large that produced approximately

100 million, 500 million, and one billion, respectively, dynamic instructions.

To measure the fidelity of the MinneSPEC reduced input, as compared to the reference

input set, they used two metrics. The first metric used the chi-squared test to measure the

“goodness-of-fit” between the instruction mixes of MinneSPEC reduced and the

reference input sets. The second metric did the same by comparing the function-level

execution profiles for each input set. (A function-level profile is the set of times that is

spent executing each function.) Their results showed that half of the benchmarks had

statistically similar function-level execution profiles for both the MinneSPEC and

123

reduced input sets. A slightly higher percentage of benchmarks had a statistically similar

instruction mix profiles for both input sets.

While the MinneSPEC reduced and reference input sets are similar in some respects,

KleinOsowski and Lilja showed that, for some benchmarks, the memory performance (as

exemplified by the cache miss rate) can be quite different.

Another way of reducing the simulation time is to perform detailed (slow) simulations on

some parts of the program while performing functional (fast) simulations on the other

parts of the program. One problem with this approach is that the processor state coming

out of the functional simulation reflects processor state that was present when going into

the functional simulation.

To address this problem, Haskins and Skadron [Haskins01] proposed Minimal Subset

Evaluation as a way to decrease the simulation time of the program’s warm-up phase by

probabilistically determining a minimal set of transactions that are necessary for a

sufficiently accurate cache state. More specifically, they used a “crude heuristic” to

determine the number of memory accesses that need to occur before the end of the fast-

forwarding to achieve a cache state that is statistically similar to the cache state without

fast-forwarding. They used separate formulas for the direct-mapped and set-associative

caches to reduce the computation time.

Their results showed that this approach, for a 99.9% probability of achieving an accurate

processor state, decreased the simulation time by an average of 47% with only a 0.3%

error in the IPC. For a 95% probability, their approach decreased the simulation time by

an average of 60% while incurring a 0.4% error.

Finally, the third way of reducing the simulation time is to determine a group of

representative program intervals that could be substituted for the entire program. Using

this way, the computer architect can simulate only those samples in lieu of executing the

entire benchmark. Alternatively, the architect can perform detailed simulations on those

124

samples while fast-forwarding between them. Using this approach can dramatically

reduce the execution time while, if properly done, minimizing the error.

One implementation of this way is given in [Sherwood02]. In this paper, Sherwood et al

used profiling to determine a group of representative program samples that could be

substituted for the entire program. To characterize each program sample, they used the

basic block execution frequency. Associated with each program sample is a basic block

vector that contains the execution frequencies of each basic block in that program sample.

Then, to determine the similarity of program samples, they calculated the Euclidean

distances between vectors. Two program samples are similar if there is small Euclidean

distance between them. After calculating the Euclidean distances, they chose the most

dissimilar program samples as the representative set of program samples.

Their results showed that this method could decrease the simulation time of the reference

input set by over a hundred or even a thousand times with only a 17% IPC error when

using a single program sample and a 3% IPC error when using multiple program samples.

By comparison, blindly fast-forwarding has an 80% IPC error without a comparable

reduction in the simulation time.

7.4.3. Benchmark and Input Set Characterization

In most cases, simulating all of the benchmarks and input sets in a benchmark suite is not

a tractable problem. To reduce the simulation time, computer architects usually simulate

only a sub-set of the benchmarks in a benchmark suite. However, if the benchmarks in

this sub-set are too similar with respect to each other, then the simulation results may be

skewed. To address this problem, the following two papers propose solutions that

classify benchmarks and determine a minimal set of benchmarks to run.

Eeckhout et al [Eeckhout02] used statistical data analysis techniques to determine the

statistical similarity of benchmark and input set pairs. To quantify the similarity, they

used metrics such as the instruction mix, the branch prediction accuracy, the data and

125

instruction cache miss rates, the number of instructions in a basic block, and the

maximum amount of parallelism inherent to the benchmark. After characterizing each

benchmark with the aforementioned metrics, they used statistical approaches such as

principal component analysis and cluster analysis to actually cluster the benchmarks and

input set pairs together.

The key difference between their method of grouping benchmarks and the method

presented in Chapter 4 is that their method is predicated on defining a set of metrics that

encompass all of the key factors that affect the performance. The deficiency of their

approach is that it assumes that all significant metrics have been incorporated into the

statistical design without the benefit of simulations. However, since it is possible for two

unrelated processor parameters to interact, picking metrics to identify the effect of either

parameter does not necessarily cover the effect of their interaction. The approach given

in this dissertation, on the other hand, does not make that assumption; instead, all

parameters are weighted equally. Finally, their method requires a redefinition of the

metrics if it were be used to classify benchmarks based on other metrics, such as the

power consumption, while this method does not require any redefinition.

Taking a different approach to the same problem, Giladi and Ahituv [Giladi95] identified

the “redundant” benchmarks in the SPEC 92 benchmark suite. They defined a redundant

benchmark to be one that can be removed from the benchmark suite without significantly

affecting the resulting SPEC number. In theory, the SPEC number measures the

performance of a computer system across a wide range of programs. The SPEC number

is generated by normalizing each benchmark’s execution time to a baseline system and

then computing the geometric mean of the results.

Their results show that 13 of the 20 benchmarks in the SPEC 92 suite were redundant. In

other words, the conclusion of their approach is that only seven benchmarks need to be

simulated and that those seven adequately represent all 20.

126

This method of determining redundant benchmarks is significantly different from the one

proposed in Chapter 4 for at least two reasons. First of all, this method is completely

based on approximating the SPEC number. Secondly, since the SPEC number is

calculated by using the benchmark’s execution time and by normalizing the execution

times to a baseline system, there is no direct connection to the effect that each benchmark

has on the processor. However, the method in this dissertation focuses exclusively on the

benchmark’s effect on the processor.

7.4.4. Processor Parameter Analysis

One problem in computer architecture that is not very understood is the effect that

different processor components have on the processor’s performance. While it is

relatively simple to understand the effect that the size or number of a component has on

the performance, what complicates this problem is that the processor components interact

in complex ways. Since these components and their interactions could significantly

affect the processor’s performance, it is important to understand their effect. The

remainder of this section describes the related work that analyzes the effect of various

processor components.

Skadron et al [Skadron99] performed an in-depth study of the trade-offs between the

instruction-window size (i.e. number of ROB entries), branch prediction accuracy, and

the sizes of the L1 caches. Their paper performed a set of detailed sensitivity analyses

that examined the IPC for different instruction-window sizes, data and instruction cache

sizes, and different branch prediction accuracies using the integer benchmarks of the

SPEC 95 benchmark suite.

When evaluating the effect of a pair of parameters, they fixed two of the four parameters

while varying the other two. For example, to determine the effect that L1 D-Cache and

L1 I-Cache sizes has on the performance (IPC), they fixed the branch prediction accuracy

to be 100% while using a 128-entry instruction window.

127

While their results were very detailed and had several meaningful conclusions, these

results and conclusions cannot be taken completely a face value for a couple of reasons.

First of all, before they performed their sensitivity analyses, they did not determine the

important parameters and interactions. As a result, some of the important parameters and

interactions may have a disproportionate and unknown effect on the results. Second, the

values of the fixed parameters also can have a significant impact on the results. The

values for fixed parameters can also have a large, unknown effect by establishing a

baseline result that is unrealistically high or low.

In summary, the related work described in this section has focused on simulation

validation, reducing the simulation time, benchmark and input set characterization, and

processor parameter analysis. The goal of the first three topics is to improve the accuracy

of the simulation results while the goal of the fourth topic is to gain a deeper

understanding of how the various processor components affect its performance. While

these two goals are somewhat similar to the benefits of using statistically rigorous

simulation methodology, the key difference between prior work and this dissertation is

that the primary focus of this dissertation is improving simulation methodology. As a

result, this dissertation covers its steps of the simulation methodology in more depth and

also by basing its recommendations on a statistical foundation.

128

Chapter 8

Future Work

This chapter describes some future work related to Instruction Precomputation, to

exploiting trivial computations, and, especially, to improving simulation methodology.

8.1. Instruction Precomputation

One potential problem with the current implementation of Instruction Precomputation is

that the lifetime of the unique computations that are in the Precomputation Table could be

very short. For example, the unique computation 0+0 may be heavily used for

initialization purposes at the beginning of the program, and used relatively infrequently

afterwards. Therefore, although this particular unique computation has a very high

frequency of execution overall, its frequency of execution is much lower after the

program’s initialization section. More generally, since a unique computation’s frequency

of execution may be very high in some parts of the program and very low in others, the

Precomputation Table could be redesigned to allow the Precomputation Table to replace

unique computations that may have a low frequency of execution in the near future with

high frequency ones. However, instead of dynamically replacing one unique

computation at a time, to reduce the access time to the Precomputation Table (which is

129

affected by the number of ports), the entire table could be updated at a single time. Of

course, while the table is being updated, its entries cannot be accessed. Accordingly,

since the compiler – through feedback-directed optimization – would determine what

unique computations should be placed in the Precomputation Table at what time, the

Precomputation Table would then be similar to a software managed cache.

In this case, the Precomputation Table would not need to be as large as when the table is

not updated since the table needs only to hold the unique computations that could be used

in the near future. Furthermore, instead of only at the beginning of the program, updating

the Precomputation Table periodically may also yield better speedups when compared to

using a single, monolithic Precomputation table.

Another possibility to improve the performance and the efficiency – as measured by table

area – of Instruction Precomputation is to combine it with the hardware for Trivial

Computation Simplification and Elimination. The advantage of combining these two

approaches is that Instruction Precomputation can use the Trivial Computation

Simplification and Elimination hardware to “filter” unique computations that are trivial

out of the Precomputation Table. As a result, the Precomputation Table will be filled

only with unique computations that are not trivial. Consequently, the combination of

these two approaches will target a larger number of unique computations (for the same

table size) or will target the same number of unique computations (for a smaller table).

8.2. Simplification and Elimination of Trivial Computations

Although the results in Chapter 6 showed that hardware can be used to reduce the

execution time of the program by Simplifying and Eliminating Trivial Computations, a

potentially more cost-effective solution is to use the compiler to statically simplify or

eliminate any trivial computations. However, the efficacy of this alternative approach

depends on the cause of trivial computations. In other words, why do typical programs

have such a large percentage of trivial computations?

130

If trivial computations are strictly correlated to a specific input set, then it is probably

more effective to use hardware to simplify and eliminate the trivial computations since

the compiler may not be able to simplify or eliminate that trivial computation for all input

sets. On the other hand, if the trivial computations are primarily a function of the

program, then the compiler may be able to simplify or eliminate a large number of trivial

computations since the trivial computations are independent of the input set. However, to

determine which situation predominates, the causes of why a program executes so many

trivial computations need to be identified.

8.3. Improving Computer Architecture Simulation and Design

Methodology

Chapter 4 described the six major steps of the simulation process and the improvements

to Steps 3, 4, and 6 (processor parameter value selection, benchmark selection, and

enhancement analysis) of the simulation process proposed by this dissertation. Section

8.3.1 describes two potential improvements that could be applied to Steps 3 and 5 of the

simulation process while Section 8.3.2 describes a potential improvement for processor

design methodology.

8.3.1. Simulation Methodology

In step 3 of the simulation process, the computer architect chooses values for the different

user-configurable processor parameters. Chapter 4 described a procedure for using a

Plackett and Burman design to aid the architect in choosing an appropriate set of

processor parameter values. However, when choosing processor parameters values, the

architect needs to realize that using different input sets could result in very different

program characteristics.

131

For example, one of the most important program characteristics is the miss rate of the L1

D-Cache. However, for several benchmarks in the SPEC 2000 benchmark suite, the L1

D-Cache miss rate when using the reference input set is statistically different that the L1

D-Cache miss rate when using the MinneSPEC large reduced, test, or train input sets

[Yi02-2]. Therefore, if the architect incorrectly assumes that the L1 D-Cache miss rate of

the test input set is fairly similar to the L1 D-Cache miss rate of the reference input set,

then the memory performance of the processor will appear to be much better when using

the test input set since the memory parameters were not adjusted appropriately.

Therefore, although the architect may use the Plackett and Burman design to help choose

processor parameter values, that careful effort could be negated by basing those values on

an incorrect premise, namely, that the reduced and reference cache miss rates are the

same.

One way of salvaging the utility of the reduced input sets – which are attractive since

they have shorter-than-reference simulation times – is to reduce the cache size and

associativity when using reduced input sets. The problem with this approach is that, to

normalize the cache miss rates of the reduced and reference input sets, each benchmark

may require a different cache size and associativity. Therefore, one benchmark may need

to use an 8 KB, 1-way cache while another benchmark may need to use a 64 KB, 4-way

cache.

While this non-uniformity of cache sizes and associativity across benchmarks minimizes

the differences in the cache miss rates when using the reduced input set – which

decreases the amount of error in the simulation results – this non-uniformity makes it

very difficult for the architect to evaluate the performance of any memory-based

enhancement since the efficacy of the enhancement may depend on the actual cache size

or associativity.

An additional problem when scaling the cache size and associativity to minimize the

difference in the cache miss rates is that there may be multiple cache configurations that

appear to have approximately the same effect. However, since some of the cache

132

configurations make seem a little “extreme” (i.e. using a 1 KB, 1-way cache for a reduced

input set instead of a 128 KB, 8-way cache for the reference input set) the architect may

opt to use less “extreme” cache configurations. The key question when deciding whether

to use cache configuration A or cache configuration B is: What is the error for each

configuration? The cache configuration that minimizes the differences in the cache miss

rates of the reduced and reference input sets may have about the same amount of error as

the cache configuration that is second best.

Therefore, as an item of future work that aims to improve the simulation methodology of

Step 3, the first step is to quantify the amount of error in IPC that exists when reduced

caches are not used with reduced input sets. Then, the second step is to determine a set of

cache configurations that minimize the error.

In step 5 of the simulation process, the computer architect actually performs the

simulations. There are at least four main ways to reduce the simulation time of the

benchmarks, when it uses the reference input set. First, the architect could use reduced

input sets like those from the MinneSPEC benchmark suite. Second, the architect could

opt to fast-forward (functional simulation only) through the initialization section of the

program and then resume normal simulation (full-timing and modeling). Third, the

architect could modify the simulator to periodically fast-forward through parts of the

program while performing full-simulation on the samples in-between. Fourth, the

architect could simulate a fixed-number of instructions and then terminate the simulation

at that point.

Ostensibly, these approaches reduce the total simulation time while preserving the

characteristics of the reference input sets. However, the fidelity of these approaches has

not been comprehensively and comparatively established. In addition to the possibility

that some of these approaches may incur a lower amount of error than the others, some of

these approaches also may be more appropriate for testing the effect of certain

enhancements. For example, fast-forwarding through the initialization section of

computationally-intensive benchmarks may under-represent the effect of trivial

133

computation elimination since compilers often use 0+0 to clear the value of a register or a

memory location. Also, since the initialization section may account for a significant

percentage of the program’s total execution time, fast-forwarding through the

initialization may inflate an enhancement’s speedup.

Therefore, to determine which approach is best for power reduction and performance

evaluation, each of these approaches will be characterized to determine which approach

is most similar to the reference input set, which approach has the least amount of error,

and which approach is most suitable for evaluating the efficacy of different types of

enhancements.

8.3.2. Design Methodology

One problem with processor design methodology is that new processors running future

programs are designed using old processors running dated programs. So, how does a

computer architect design and evaluate the performance of a future processor using the

tools of the past (short of inventing a time machine)? Of course, the fundamental issue of

this problem is summarized by the following question: What is the difference in

performance (and power consumption) for the expected (i.e. simulated) and actual future

processors? To address this issue, the difference in the expected performance of the

future processor running past and future benchmarks with past and future compiler

options will be quantified.

134

Chapter 9

Conclusion

The performance of superscalar processors is limited by the amount of instruction-level

parallelism (ILP), which in turn is limited by control and data dependences between

instructions. This dissertation describes two microarchitectural techniques, Instruction

Precomputation and the Simplification and Elimination of Trivial Computations, which

increases the amount of ILP.

Instruction Precomputation improves the performance of a processor by dynamically

eliminating instructions that are redundant computations. A redundant computation is

one that the processor previously executed. Instruction Precomputation uses the compiler

to determine the highest frequency unique computations, which are loaded into the

Precomputation Table before the program begins execution. For redundant

computations, instead of re-computing its result, the output value is forwarded from the

matching entry in the Precomputation Table to the instruction and then the instruction is

removed from the pipeline.

The results in this dissertation show that a small number of unique computations account

for a disproportionate number of dynamic instructions. More specifically, less than 0.2%

of the total unique computations account for 14.68% to 44.49% of the total dynamic

instructions. When using the highest frequency unique computations from Input Set B

135

while running Input Set A (Profile B, Run A), a 2048-entry Precomputation Table

improves the performance of a base 4-way issue superscalar processor by an average of

10.53%. This speedup is very close to the upper-limit speedup of 10.87%. This speedup

is higher than the average speedup of 7.43% that value reuse yields for the same

processor configuration and the same benchmarks, but value reuse requires slightly more

hardware. More importantly, for smaller table sizes (16-entry), Instruction

Precomputation outperforms value reuse, 4.47% to 1.82%. Finally, the results show that

the speedup due to Instruction Precomputation is the approximately same regardless of

which input set is used for profiling and regardless of how the unique computations are

selected (frequency or frequency/latency product).

Overall, there are two key differences between Instruction Precomputation and value

reuse. First of all, Instruction Precomputation uses the compiler to profile the program to

determine the highest frequency unique computations while value reuse does its profiling

at run-time. Since the compiler has more time to determine the highest frequency unique

computations, the net result is that Instruction Precomputation yields a much higher

speedup than value reuse does for a comparable amount of chip area. Second of all,

although using the compiler to manage the PT eliminates the need for additional

hardware to dynamically update the PT, it can dramatically increase the compile time

since the compiler must profile the program.

Trivial computations are computations where the output value is zero, one, equal to one

of the input values, or a shifted version of one of the input values. Examples of trivial

computations include: 0+X, X*0, and X/X. The results in this dissertation show that, for

12 selected SPEC 2000 benchmarks, 12.24% of all dynamic instructions are trivial

computations. For the five selected benchmarks from the MediaBench benchmark suite,

trivial computations account for 5.73% of all dynamic instructions.

This dissertation has demonstrates that since a significant percentage of a program’s

instructions are trivial computations, simplifying or eliminating these trivial computations

can improve the processor’s performance. A processor simplifies a trivial computation

136

by converting it to a less complex (i.e. lower latency) instruction type with different

operands, but that will still produce the correct result. On the other hand, a processor

eliminates a trivial computation simply by removing the instruction from the pipeline and

selecting the correct output value (0, 1, 0xffffffff, or the value of the other input operand).

The results in this dissertation show that dynamically simplifying and eliminating trivial

computations improves the performance of a base 4-way issue superscalar processor by

an average of 8.86% for 12 SPEC 2000 benchmarks and by 4.00% for five MediaBench

benchmarks. Additionally, simplifying and eliminating trivial computations also

improves the performance of a processor that does not have any functional unit

constraints (i.e. where the number of each type of functional unit is equal to the issue

width of the processor) by an average of 6.60% (SPEC 2000) and 2.92% (MediaBench).

Overall, Simplifying and Eliminating Trivial Computations yields fairly impressive

speedups at a relatively low hardware cost. This proposed enhancement is particularly

novel because it improves the processor’s performance with early non-speculative

instruction execution. This allows the processor to exceed the dataflow limit without

requiring verification of a prediction and misprediction recovery.

While these new techniques can improve the performance, the primary focus of this

dissertation is on improving the quality of simulation methodology. More specifically,

this dissertation describes how a statistical Plackett and Burman design can be used to

improve the way user-configurable processor parameter values are chosen, benchmarks

are chosen, and finally processor enhancements are analyzed. When choosing processor

parameter values, a computer architect can use a Plackett and Burman design to identify

the key processor parameters that have a disproportionate effect on the processor’s

performance. Identifying the key processor parameters is an extremely difficult task

since unknown interactions can severely skew the results. Since a Plackett and Burman

design is able to quantify the effect of the most significant interactions, the architect can

confidently use that design to help determine the most significant parameters. After

identifying the key parameters, the architect can carefully choose values for those

137

parameters and then choose values for the remaining parameters. The values for the

remaining parameters do not need to be chosen with as much care since they have less

effect on the results than do the key parameters.

The results in Section 6.3.1 demonstrated that a Plackett and Burman design could

efficiently identify the most significant processor parameters. In this case, the most

significant processor parameters in sim-outorder of the SimpleScalar tool set for the 12 C

benchmarks of the SPEC 2000 benchmark suite were the:

1) Number of Reorder Buffer Entries
2) L2 Cache Latency
3) Branch Predictor (i.e. the Branch Prediction Accuracy)
4) Number of Integer ALUs
5) L1 D-Cache Latency
6) L1 I-Cache Size
7) L2 Cache Size
8) L1 I-Cache Block Size
9) Memory Latency of the First Block
10) Number of LSQ Entries

After realizing that these parameters have the most effect on the processor’s performance,

choosing their values and the values of the other processor parameters is fairly simply.

Since the results of a Plackett and Burman design is a vector of ranks, those results can

also be used to aid the architect in choosing a set of benchmarks that are either distinct or

similar – depending on what is appropriate to evaluate the performance of the architect’s

enhancement. If all of the parameters’ ranks for two benchmarks are similar, then those

two benchmarks have a similar effect on the processor. After calculating the Euclidean

distance between vectors, which represents the amount of dissimilarity between those two

benchmarks, the results can be displayed using a dendrogram.

If the architect wishes to select N benchmarks, the architect moves a horizontal line up

from a dissimilarity of zero. When the horizontal line intersects N vertical lines, the

benchmarks have been categorized into N groups. Then, to select the final set of

138

benchmarks, the architect needs only to select one benchmark from each group. In the

example in Section 6.3.2, gzip, vpr-Place, vpr-Route, gcc, art, mcf, equake, and ammp

form the final set of benchmarks.

The final application of a Plackett and Burman design that is proposed in this dissertation

is to use it to analyze the effect of a processor enhancement. For each parameter, by

comparing its average sum-of-ranks in the base processor against its average sum-of-

ranks in the processor with the enhancement, the architect can see how the enhancement

affects the processor. For example, adding Instruction Precomputation to the processor

will primarily improve that processor’s performance by decreasing the amount of

functional unit contention. (Instruction Precomputation also improves the processor’s

performance by decreasing the execution latency of redundant computations.) In other

words, Instruction Precomputation addresses the performance bottleneck of busy

functional units.

Adding hardware to Simplify and Eliminate Trivial Computations does not significantly

relieve or exacerbate any performance bottlenecks. Rather, the order of and the sums-of-

ranks for the top ten most significant parameters are essentially the same. Therefore, it is

concluded that this processor enhancement more or less uniformly affects all processor

parameters (i.e. it does not markedly mitigate or create any bottlenecks).

Overall, one of the key contributions of this dissertation is that it advocates the use of

statistically-based simulation methodology. Since architects usually approach the

simulation process in an ad-hoc manner and since no prior work has explicitly focused on

improving simulation methodology, using Plackett and Burman designs represents a

fundamental improvement in simulation methodology. In particular, Plackett and

Burman designs are effective in helping the computer architect choose processor

parameter values and benchmarks, and analyze the effect of processor enhancements.

The cost of this approach is that it requires a few extra simulations.

139

In conclusion, this dissertation shows the following four key results. First, the results

show that significant amounts of redundant and trivial computations exist in typical

programs. Second, the Instruction Precomputation approach of statically determining the

highest frequency unique computations yields higher speedups than the value reuse

approach of dynamically determining the redundant computations. Third, Simplifying

and Eliminating Trivial Computations can also significantly improve a processor’s

performance. Finally, a Plackett and Burman design can be used to improve simulation

methodology by helping the architect choose processor parameters and benchmarks, and

analyze the effect of a processor enhancement.

140

Bibliography

[Azam97] M. Azam, P. Franzon, and W. Liu, “Low Power Data Processing by
Elimination of Redundant Computations”, International Symposium
on Low Power Electronics and Design, 1997.

[Bannon97] P. Bannon and Y. Saito, “The Alpha 21164PC Microprocessor”,
International Computer Conference, 1997.

[Black98] B. Black and J. Shen, “Calibration of Microprocessor Performance
Models”, IEEE Computer, Vol. 31, No. 5, May 1998, Pages 59-65.

[Burger97] D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0”,
University of Wisconsin-Madison Computer Sciences Department
Technical Report #1342, 1997.

[Cain02] H. Cain, K. Lepak, B. Schwartz, and M. Lipasti, “Precise and Accurate
Processor Simulation”, Workshop on Computer Architecture
Evaluation using Commercial Workloads, 2002.

[Citron98] D. Citron and D. Feitelson, “Accelerating Multi-Media processing by
Implementing Memoing in Multiplication and Division Units”,
International Conference on Architectural Support for Programming
Languages and Operating Systems, 1998.

[Citron00-1] D. Citron and D. Feitelson, “The Organization of Lookup Tables for
Instruction Memoization”, Hebrew University of Jerusalem Technical
Report: 2000-4.

[Citron00-2] D. Citron and D. Feitelson, “Hebrew University of Jerusalem
Technical Report: 2000-5”, Hebrew University of Jerusalem Technical
Report: 2000-5.

[Desikan01] R. Desikan, D. Burger, and S. Keckler, “Measuring Experimental
Error in Microprocessor Simulation”, International Symposium on
Computer Architecture, 2001.

141

[Edmondson95] J. Edmondson, P. Rubinfeld, and R. Preston, “Superscalar Instruction
Execution in the 21164 Alpha Microprocessor”, IEEE Micro, Vol. 15,
No. 2, March-April 1995, Pages 33-43.

[Gabbay98] F. Gabbay and A. Mendelson, “Using Value Prediction to Increase the
Power of Speculative Execution Hardware”, ACM Transactions on
Computer Systems, Vol. 16, No. 4, August 1998, Pages 234-270.

[Gibson00] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M.
Heinrich, “FLASH vs. (Simulated) FLASH: Closing the Simulation
Loop”, International Conference on Architectural Support for
Programming Languages and Operating Systems, 2000.

[Giladi95] R. Giladi and N. Ahituv, “SPEC as a Performance Evaluation
Measure”, IEEE Computer, Vol. 28, No. 8, August 1995, Pages 33-42.

[Glamm00] R. Glamm and D. Lilja, “Automatic Verification of Instruction Set
Simulation Using Synchronized State Comparison”, Annual
Simulation Symposium, 2001.

[Gonzalez98] A. Gonzalez, J. Tubella, and C. Molina, “The Performance Potential of
Data Value Reuse”, University of Politecenica of Catalunya Technical
Report: UPC-DAC-1998-23, 1998.

[Hennessy96] J. Hennessy and D. Patterson, “Computer Architecture: A Quantitative
Approach”, (Second Edition), Morgan-Kaufman 1996.

[Henning00] J. Henning, "SPEC CPU2000: Measuring CPU Performance in the
New Millennium", IEEE Computer, Vol. 33, No. 7, July 2000; Pages
28-35.

[Horel99] T. Horel and G. Lauterbach, “UltraSPARC-III: Designing Third-
Generation 64-Bit Performance”, IEEE Micro, Vol. 19, No. 3, May-
June 1999, Pages 73-85.

[Huang98] J. Huang and D. Lilja, “Improving Instruction-Level Parallelism by
Exploiting Global Value Locality”, University of Minnesota Technical
Report: HPPC-98-12, 1998.

[Huang99] J. Huang and D. Lilja, “Exploiting Basic Block Locality with Block
Reuse”, International Symposium on High Performance Computer
Architecture, 1999.

[Kessler98] R. Kessler, E. McLellan, and D. Webb, “The Alpha 21264
Microprocessor Architecture”, International Conference on Computer
Design, 1998.

[Kessler99] R. Kessler, “The Alpha 21264 Microprocessor”, IEEE Micro, Vol. 19,
No. 2, March-April 1999, Pages 24-36.

[KleinOsowski02]A. KleinOsowski and D.J. Lilja, “MinneSPEC: A New SPEC
Benchmark Workload for Simulation-Based Computer Architecture
Research”, Vol. 1, June 2002.

[Kumar97] A. Kumar, “The HP PA-8000 RISC CPU”, IEEE Micro, Vol. 17, No.
2, March-April 1997, Pages 27-32.

[Lee97] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: A Tool
for Evaluating and Synthesizing Multimedia and Communications
Systems”, International Symposium on Microarchitecture, 1997.

142

[Leiholz97] D. Leiholz and R. Razdan, “The Alpha 21264: A 500 MHz Out-of-
Order Execution Microprocessor”, International Computer
Conference, 1997.

[Lilja00] D. Lilja, “Measuring Computer Performance”, Cambridge University
Press, 2000.

[Lipasti96-1] M. Lipasti, C. Wilkerson and J. Shen, “Value Locality and Load Value
Prediction”, International Conference on Architectural Support for
Programming Languages and Operating Systems, 1996.

[Lipasti96-2] M. Lipasti and J. Shen, “Exceeding the Dataflow Limit via Value
Locality”, International Symposium on Microarchitecture, 1996.

[Matson98] M. Matson, D. Bailey, S. Bell, L. Biro, S. Butler, J. Clouser, J. Farrell,
M. Gowan, D. Priore, and K. Wilcox, “Circuit Implementation of a
600 MHz Superscalar RISC Microprocessor”, International
Conference on Computer Design, 1998.

[Molina99] C. Molina, A. Gonzalez, and J. Tubella, “Dynamic Removal of
Redundant Computations”, International Conference on
Supercomputing, 1999.

[Montgomery91] D. Montgomery, “Design and Analysis of Experiments” (Third
Edition), Wiley 1991.

[Normoyle98] K. Normoyle, M. Csoppenszky, A. Tzeng, T. Johnson, C. Furman, and
J. Mostoufi, “UltraSPARC-IIi: Expanding the Boundaries of a System
on a Chip”, IEEE Micro, Vol. 18, No. 2, March-April 1998, Pages 14-
24.

[Plackett46] R. Plackett and J. Burman, “The Design of Optimum Multifactorial
Experiments”, Biometrika, Vol. 33, Issue 4, June 1946, Pages 305-
325.

[Richardson92] S. Richardson, “Caching Function Results: Faster Arithmetic by
Avoiding Unnecessary Computation”, Sun Microsystems Laboratories
Technical Report SMLI TR-92-1, 1992.

[Sazeides97] Y. Sazeides and J. Smith, “The Predictability of Data Values”,
International Symposium on Microarchitecture, 1997.

[Silc99] J. Silc, B. Robic, and T. Ungerer, “Processor Architecture: From
Dataflow to Superscalar and Beyond”, Springer-Verlag, 1999.

[Sima97] D. Sima, T. Fountain, and P. Kacsuk, “Advanced Computer
Architectures, A Design Space Approach”, Addison Wesley Longman,
1997.

[Skadron99] K. Skadron, P. Ahuja, M. Martonosi, and D. Clark, “Branch
Prediction, Instruction-Window Size, and Cache Size: Performance
Trade-Offs and Simulation Techniques”, IEEE Transactions on
Computers, Vol. 48, No. 11, November 1999, Pages 1260-1281.

[Sodani97] A. Sodani and G. Sohi, “Dynamic Instruction Reuse”, International
Symposium on Computer Architecture, 1997.

[Sodani98] A. Sodani and G. Sohi, “An Empirical Analysis of Instruction
Repetition”, International Symposium on Architectural Support for
Programming Languages and Operating Systems, 1998.

143

[Song94] S. Song, M. Denman, and J. Chang, “The PowerPC 604 RISC
Microprocessor”, IEEE Micro, Vol. 14, No. 5, October 1994, Pages 8-
17.

[Tremblay96] M. Tremblay and J.M. O'Connor, “UltraSparc I: A Four-Issue
Processor Supporting Multimedia”, IEEE Micro, Vol. 16, No. 2,
March-April 1996, Pages 42-50.

[Wang97] K. Wang and M. Franklin, "Highly Accurate Data Value Prediction
using Hybrid Predictors", International Symposium on
Microarchitecture, 1997.

[Weinberg98] N. Weinberg and D. Nagle, “Dynamic Elimination of Pointer-
Expressions”, International Conference on Parallel Architectures and
Compilation Techniques, 1998.

[Yeager96] K. Yeager, “The MIPS R10000 Superscalar Microprocessor”, IEEE
Micro, Vol. 16, No. 2, March-April 1996, Pages 28-40.

[Yi02-1] J. Yi and D. Lilja, “Effects of Processor Parameter Selection on
Simulation Results”, MSI Report 2002/146, 2002.

[Yi02-2] J. Yi and D. Lilja, “Cache Scaling for Realistic Memory Behavior in
Processor Simulations When Using Reduced Input Sets”, Unpublished
Technical Report, 2002.

144

Appendix A – Supplemental Results

This Appendix shows the figures and/or tables for three sets of results: 1) The profiling

results for the amount of redundant and trivial computations when using a second input

set; 2) The speedup results due to Instruction Precomputation for all possible

combinations of input sets, frequency, and the frequency and latency product; and 3) The

speedup results due to Simplifying and Eliminating Trivial Computations when using a

second input set. With the exception of some of the Instruction Precomputation speedup

results, each of these figures and tables in this Appendix has a corresponding figure or

table in Chapters 2, 3, or 6. Specifically, with the exceptions of Figures A6.1.4.2 to

A6.1.4.5, the name of each figure or table is based on the name of its corresponding

figure or table, respectively. For example, Figure 3.2.1 shows the amount of trivial

computation present in select SPEC 2000 and select MediaBench benchmarks with one

input set; the corresponding figure, when using another input set, is Figure A3.2.1.

145

A1 Amount of Global-Level Redundant Computation

0%

20%

40%

60%

80%

100%

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Benchmark

U
n
iq

u
e

C
o
m

p
u
ta

ti
o
n
s

(P
er

c
en

t) <10^9

<10^8

<10^7

<10^6

<10^5

<10^4

<10^3

<10^2

<10^1

Figure A2.2.1.1: Frequency Distribution of Unique Computations per

Benchmark, Global-Level, Normalized, Input Set B

146

0%

20%

40%

60%

80%

100%

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Benchmark

U
n
iq

u
e

C
o
m

p
u
ta

ti
o
n
s

(P
er

c
en

t) <10^9

<10^8

<10^7

<10^6

<10^5

<10^4

<10^3

<10^2

<10^1

Figure A2.2.1.2: Percentage of Dynamic Instructions Due to the Unique

Computations in each Frequency Range, Global-Level, Normalized, Input

Set B

147

Table A2.2.1.1: Characteristics of the Unique Computations for the Top

2048 Global-Level Unique Computations, Input Set B

Benchmark % of Unique Computations % of Total Instructions
gzip 0.020 13.94

vpr-Place 0.258 41.85
vpr-Route 0.804 28.61

gcc 0.011 25.45
mesa 0.009 38.35
art 0.012 16.44
mcf 0.005 17.39

equake 0.004 28.71
ammp 0.168 29.78
parser 0.028 26.51
vortex 0.014 24.64
bzip2 0.002 30.64
twolf 0.007 22.04

148

A2 Amount of Local-Level Redundant Computation

0%

20%

40%

60%

80%

100%

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Benchmark

U
n
iq

u
e

C
o
m

p
u
ta

ti
o
n
s

(P
er

c
en

t) <10^9

<10^8

<10^7

<10^6

<10^5

<10^4

<10^3

<10^2

<10^1

Figure A2.2.2.1: Frequency Distribution of Unique Computations per

Benchmark, Local-Level, Normalized, Input Set

(*) Results for equake not presented due to a problem with the Origin 3800 system

149

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Benchmark

U
n
iq

u
e

C
o
m

p
u
ta

ti
o
n
s

(P
er

c
en

t) <10^9

<10^8

<10^7

<10^6

<10^5

<10^4

<10^3

<10^2

<10^1

Figure A2.2.2.2: Percentage of Dynamic Instructions Due to the Unique

Computations in each Frequency Range, Local-Level, Normalized, Input Set

B

(*) Results for equake not presented due to a problem with the Origin 3800 system

150

A3 Comparison of the Amount of Global and Local Level Redundant

Computation

Table A2.2.2.1: Percentage of Instructions Due to the 2048 Highest

Frequency Unique Computations at the Global and Local Levels, Input Set

B

Benchmark Global Local Global - Local
gzip 13.94 11.13 2.81

vpr-Place 41.85 35.24 6.61
vpr-Route 28.61 19.90 8.72

gcc 25.45 12.96 12.49
mesa 38.35 37.40 0.95
art 16.44 15.93 0.51
mcf 17.39 15.05 2.34

equake 28.71 0.00 28.71
ammp 29.78 24.21 5.57
parser 26.51 24.94 1.57
vortex 24.64 20.01 4.63
bzip2 30.64 25.60 5.04
twolf 22.04 16.51 5.53

151

A4 Amount of Trivial Computation

0

10

20

30

40

50

60

70

80

90

100

AD
D

SU
B

M
ULT DIV

AND
O
R

XO
R

SLL
SRL

SRA

FAD
D

FSU
B

FM
UL

FDIV

FA
BS

FS
Q
RT

To
ta

l

Instruction Type

T
ri
v
ia

l
In

st
ru

ct
io

n
s
 (
P
e
rc

e
n
t)

SPEC

MB

Figure A3.2.1: Percentage of Trivial Computations per Instruction Type and

per Total Number of Dynamic Instructions for the SPEC and MediaBench

Benchmarks

Table A4.1: Selected MediaBench Benchmarks and Input Sets (Dynamic

Instruction Count in Millions of Instructions), Input Set B

Benchmark Input Set Name Instr. (M)
adpcm-Decode S_16_44.adpcm 8.7
adpcm-Encode S_16_44.pcm 10.5
epic-Compress test_image.pgm 55.4

epic-Uncompress test.image.pgm.E 10.3
g721-Decode S_16_44.g721 408.4
g721-Encode S_16_44.pcm 434.1

mpeg2-Decode options.par 1180.8
mpeg2-Encode tek6.m2v 1171.1
pegwit-Decrypt pegwit.dec 15.9
pegwit-Encrypt plaintext.doc 28.7
pegwit-Pub-Key my.sec 12.7

152

A5 Speedup Due to Instruction Precomputation

0

5

10

15

20

25

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Ave
ra

ge

Benchmark

S
p
ee

d
u
p
 (
P

er
ce

n
t)

Big Cache 16 32 64 128 256 512 1024 2048

Figure A6.1.1.1: Speedup Due to Instruction Precomputation; Profile Input

Set B, Run Input Set B, Frequency

(*) Results for art not presented due to a problem with the Netfinity system

153

0

2

4

6

8

10

12

14

16

18

20

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Av
er

ag
e

Benchmark

S
p
ee

d
u
p
 (
P

er
ce

n
t)

16 32 64 128 256 512 1024 2048

Figure A6.1.2.1: Speedup Due to Instruction Precomputation; Profile Input

Set A, Run Input Set B, Frequency

154

0

5

10

15

20

25

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Av
er

ag
e

Benchmark

S
p
ee

d
u
p
 (
P

er
ce

n
t)

16 32 64 128 256 512 1024 2048

Figure A6.1.3.1: Speedup Due to Instruction Precomputation; Profile Input

Set AB, Run Input Set B, Frequency

(*) Results for art not presented due to a problem with the Netfinity system

155

0

2

4

6

8

10

12

14

16

18

20

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Av
er

ag
e

Benchmark

S
p
ee

d
u
p
 (
P

er
ce

n
t)

16 32 64 128 256 512 1024 2048

Figure A6.1.4.1: Speedup Due to Instruction Precomputation for the

Highest Frequency and Latency Product Unique Computations; Profile A,

Run B

156

0

5

10

15

20

25

30

35

40

45

50

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Av
er

ag
e

Benchmark

S
p
ee

d
u
p
 (
P

er
ce

n
t)

16 32 64 128 256 512 1024 2048

Figure A6.1.4.2: Speedup Due to Instruction Precomputation for the

Highest Frequency and Latency Product Unique Computations; Profile A,

Run A

157

0

5

10

15

20

25

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Av
er

ag
e

Benchmark

S
p
ee

d
u
p
 (
P

er
ce

n
t)

16 32 64 128 256 512 1024 2048

Figure A6.1.4.3: Speedup Due to Instruction Precomputation for the

Highest Frequency and Latency Product Unique Computations; Profile B,

Run B

(*) Results for art not presented due to a problem with the Netfinity system

158

0

5

10

15

20

25

30

35

40

45

50

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Av
er

ag
e

Benchmark

S
p
ee

d
u
p
 (
P

er
ce

n
t)

16 32 64 128 256 512 1024 2048

Figure A6.1.4.4: Speedup Due to Instruction Precomputation for the

Highest Frequency and Latency Product Unique Computations; Profile AB,

Run A

159

0

5

10

15

20

25

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Av
er

ag
e

Benchmark

S
p
ee

d
u
p
 (
P

er
ce

n
t)

16 32 64 128 256 512 1024 2048

Figure A6.1.4.5: Speedup Due to Instruction Precomputation for the

Highest Frequency and Latency Product Unique Computations; Profile AB,

Run B

(*) Results for art not presented due to a problem with the Netfinity system

160

A6 Speedup Due to Value Reuse

0

2

4

6

8

10

12

14

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Av
er

ag
e

Benchmark

S
p
ee

d
u
p
 (
P

er
ce

n
t)

16 32 64 128 256 512 1024 2048

Figure A6.1.5.1: Speedup Due to Value Reuse; Run B

161

A7 Speedup Due to Simplifying and Eliminating Trivial

Computations

0

5

10

15

20

25

30

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Ave
ra

ge

Benchmark

S
p
ee

d
u
p
 (
P
er

ce
n
t)

Figure A6.2.1.1: Speedup Due to the Simplification and Elimination of

Trivial Computations for Selected SPEC 2000 Benchmarks, Realistic

Processor Configuration, Input Set B

162

0

1

2

3

4

5

6

7

8

ad
pc

m
-D

ec
od

e

ad
pc

m
-E

nc
od

e

ep
ic-

C
om

pr
es

s

ep
ic-

U
nc

om
pr

es
s

g7
21

-D
ec

od
e

g7
21

-E
nc

od
e

m
pe

g2
-D

ec
od

e

m
pe

g2
-E

nc
od

e

Ave
ra

ge

Benchmark

S
p
ee

d
u
p
 (
P
er

ce
n
t)

Figure A6.2.1.2: Speedup Due to the Simplification and Elimination of

Trivial Computations for Selected MediaBench Benchmarks, Realistic

Processor Configuration, Input Set B

163

0

2

4

6

8

10

12

14

16

18

20

gz
ip

vp
r-P

la
ce

vp
r-R

ou
te

gc
c

m
es

a
ar

t
m
cf

eq
ua

ke

am
m
p

pa
rs
er

vo
rte

x

bz
ip
2

tw
ol
f

Ave
ra

ge

Benchmark

S
p
ee

d
u
p
 (
P
er

ce
n
t)

Figure A6.2.2.1: Speedup Due to the Simplification and Elimination of

Trivial Computations for Selected SPEC 2000 Benchmarks, Enhanced

Processor Configuration, Input Set B

164

0

1

2

3

4

5

6

7

ad
pc

m
-D

ec
od

e

ad
pc

m
-E

nc
od

e

ep
ic-

C
om

pr
es

s

ep
ic-

U
nc

om
pr

es
s

g7
21

-D
ec

od
e

g7
21

-E
nc

od
e

m
pe

g2
-D

ec
od

e

m
pe

g2
-E

nc
od

e

Ave
ra

ge

Benchmark

S
p
ee

d
u
p
 (
P
er

ce
n
t)

Figure A6.2.2.2: Speedup Due to the Simplification and Elimination of

Trivial Computations for Selected MediaBench Benchmarks, Enhanced

Processor Configuration, Input Set B

165

List of Publications

Book Chapters:
• Joshua J. Yi and David J. Lilja, “Instruction Precomputation”, Speculative Execution

in Modern Computer Architectures, edited by Pen-Chung Yew and David Kaeli, To
be Published.

• Joshua J. Yi and David J. Lilja, “Computer Architecture”, Handbook of Innovative
Computing, edited by Albert Zomaya, Springer-Verlag, To be Published.

Conference Papers:
• Joshua J. Yi, David J. Lilja, and Douglas M. Hawkins, “A Statistically Rigorous

Approach for Improving Simulation Methodology”, International Conference on
High-Performance Computer Architecture, February 2003.

• Joshua J. Yi and David J. Lilja, “Improving Processor Performance by Simplifying
and Bypassing Trivial Computations”, International Conference on Computer Design,
September 2002.

• Joshua J. Yi, Resit Sendag, and David J. Lilja, “Increasing Instruction-Level
Parallelism with Instruction Precomputation”, Euro-Par, August 2002.

Workshop Papers:
• Joshua J. Yi and David J. Lilja, “An Analysis of the Amount of Global Level

Redundant Computation in the SPEC 95 and SPEC 2000 Benchmarks”, Workshop on
Workload Characterization, December 2001.

