
An Analysis of the Amount of Global Level Redundant Computation in the
SPEC 95 and SPEC 2000 Benchmar ks

Joshua J. Yi and David J. Lilja
Department of Electrical and Computer Engineering

Minnesota Supercomputing Institute
University of Minnesota - Twin Cities

Minneapolis, MN 55455
{jjyi,lilja}@ece.umn.edu

Abstract
This paper analyzes the amount of global level

redundant computation within selected benchmarks of the
SPEC 95 and SPEC 2000 benchmark suites. Local level
redundant computations are redundant computations that
are the result of a single static instruction (i.e. PC
dependent) while global level redundant computations are
redundant computations that are the result of multiple
static instructions (i.e. PC independent). The results
show that for all benchmarks more than 90% of the
unique computations account for only 1.2% to 31.5% of
the total number of instructions. In fact, less than 1000
(0.14%) of the most frequently occurring unique
computations accounted for 19.4% - 95.5% of the
dynamic instructions. Furthermore, more redundant
computation exists at the global level as compared to the
traditional local level. For an equal number of unique
computations – approximately 100 for each benchmark –
at both the global and local levels, the global level unique
computations accounted for an additional 1.5% to 12.6%
of the total number of dynamic instructions as compared
to the local level unique computations. As a result,
exploiting redundant computations through value reuse at
the global level should yield a significant performance
improvement as compared to exploiting redundant
computations only at the local level.

1. Introduction
During its execution, a program tends to repeatedly

perform the same computations. This is due to the way
that programs are written [4]. For example, due to a
nested loop, an add instruction in the inner loop may
repeatedly initialize and then increment a loop induction
variable. For each iteration of the outer loop, the
computations performed by that add instruction are
completely identical.

In value reuse [5, 4], an on-chip table dynamically

caches the results of previous computations. The next
time the identical computation appears, the value reuse
hardware accesses the table (using the program counter
(PC) an index), retrieves the result, and forwards it to
dependent instructions. The instruction is then removed
from the pipeline since it has finished executing.

Value reuse improves the processor’s performance by
effectively decreasing the latency of the reused
instructions. Decreasing the latency of a reused
instruction either directly or indirectly reduces the
execution time of the critical path; directly if the reused
instruction is on the critical path and indirectly if the
reused instruction produces the value of an input operand
for an instruction that is on the critical path. Furthermore,
since the reused instruction does not pass through all the
pipeline stages, the number of resource conflicts
(available issue slots, functional units, reservation station
entries, etc.) decreases.

Since the PC is used to index the value reuse table,
traditional value reuse is based on the computational
history of a single static instruction. Consequently,
previous computations can only be reused if that
particular computation was performed for that static
instruction. As a result, while another instruction with the
same opcode, but with a different PC, may perform a
computation that could be reused by the first instruction,
value reuse does not occur because the results of the
second instruction cannot be accessed by the first.

This paper refers to PC dependent value reuse as local
level or local value reuse and PC independent value reuse
as global level or global value reuse. In local level value
reuse, the value reuse table is accessed by using the PC.
Since the PC is used to access the table, only the value
history for that static instruction is accessible. As a result,
for value reuse to occur for a dynamic instruction, its
static instruction must have previously executed with the
same input operands. If not, then the dynamic instruction
cannot be reused. However, in global value reuse, the PC
is not used to access the value reuse table; instead, the

table is accessed by some combination of the opcode and
input operands. As a result, an instruction can reuse the
output of any static instruction that previously executed
with the same opcode and input operands. In conclusion,
since using the PC to access the value reuse table limits
the "reusability" to that corresponding instruction, PC
dependent value reuse is referred to as local level value
reuse. On the other hand, using the opcode and the input
operands (i.e. PC independent value reuse) to access the
reuse table is called global value reuse.

The contribution of this paper is to show the potential
of global value reuse by completely quantifying the
amount of redundant computation at the global level and
to compare it to the amount of redundant computation at
the local level.

This paper is organized as follows: Section 2 describes
some related work. Section 3 describes the experimental
methodology and setup while Section 4 presents and
discusses the results. Section 5 discusses future work and
Section 6 concludes.

2. Related Work
[6] analyzed the amount of instruction repetition in the

integer benchmarks of the SPEC 95 benchmark suite.
Their results showed that 56.9% (129.compress) to 98.8%
(124.m88ksim) of the dynamic instructions were repeated.
In addition, they also analyzed the causes of instruction
repetition. However, these results were only for
instruction repetition at the local level.

[2] analyzed the amount of instruction repetition in the
integer and floating-point benchmarks of the SPEC 95
benchmark suite. Their results showed that 53%
(110.applu) to 99% (104.hydro2d) of the dynamic
instructions were repeated. Furthermore, the geometric
means of the all the benchmarks, the integer benchmarks
only, and the floating-point benchmarks only were 87%,
91%, and 83%, respectively. Therefore, there is not a
significant difference in the amount of instruction
repetition between the integer and floating-point
benchmarks. Like [6], their results were for instruction
repetition at only the local level.

[5] implemented a dynamic value reuse mechanism
that only exploited local level value reuse and tested it
with selected SPEC 92 and 95 benchmarks. Their value
reuse mechanism reused 0.2% to 26%, 5% to 27%, and
13% to 27% of the dynamic instructions for a 32 entry, a
128 entry, and a 1024 entry, respectively, value reuse
buffer. It produced speedups of 0% to 17%, 2% to 26%,
and 6% to 43% for a 32 entry, a 128 entry, and a 1024
entry, respectively, value reuse buffer. However, reusing
a higher percentage of instructions did not directly
translate to greater speedup since some of the reused
instructions were not on the critical path.
[4], on the other hand, implemented a dynamic value
reuse mechanism that exploited value reuse at the both the

global and local levels. To test the performance of their
value reuse mechanism, they used selected integer and
floating-point benchmarks from the SPEC 95 benchmark
suite. Their value reuse mechanism produced speedups of
3% to 25%; on average, it reused about 30% of the
instructions, resulting in a 10% speedup. While [4]
implemented a global reuse mechanism, it did not
determine the potential for global value reuse nor did it
analyze which instructions had the highest frequencies of
repetition.

3. Experimental Setup
To determine the amount of redundant computation at

the global level, the opcode, input operands, and PC for
all the dynamic instructions have to be stored. This paper
refers to the opcode, input operands, and PC of a dynamic
instruction as a “unique computation”. (Note that in some
cases, the term “unique computation” only refers to the
opcode and input operands.) To reduce the memory
requirements for storing this information, for duplicate
unique computations (i.e. redundant computations), in
addition to storing the unique computation itself, the total
number of times that that unique computation was
executed was also stored. The instruction output was not
stored because it is purely a function of the opcode and
input operands.

To determine the amount of global redundant
computation, each unique computation’s PC was set to 0.
As a result, unique computations that had the same
opcode and input operands, but different PCs, mapped to
the same unique computation. For the local level, the
unique computation’s PC was simply the instruction’s PC.

To gather this data, a modified version of sim-fast
from the Simplescalar tool suite [1] was used. Since sim-
fast is only a functional simulator, it is optimized for
simulation speed. As a result, it does not account for
time; only executes instructions serially; and does not
model a processor’s pipeline, caches, etc. sim-fast was
used as the base simulator instead of sim-outorder for two
reasons. The first reason is that since this paper only
profiles the instructions, the execution time, cache
behavior, etc. are unimportant. Consequently, only a
functional simulator is needed. Secondly, since the code
that was added to the base simulator accounted for a
significant fraction of the simulation time, a fast base
simulator was needed to reduce the overall simulation
time.

The criteria for selecting which benchmarks to profile
was that the benchmark had to be written in C because the
Simplescalar tool suite only has a C compiler for PISA.
The benchmark input set that was used was the maximum
of either: 1) The one that produced the fewest number of
dynamic instructions or 2) The one that was closest to 500
million dynamic instructions. Since the unique
computation for each dynamic instruction was stored in

Table 1: Benchmark Characteristics

Benchmark Suite Type Instructions (M) Input Set

099.go SPEC 95 Integer 548.2 Train
124.m88ksim SPEC 95 Integer 120.1 Train

126.gcc SPEC 95 Integer 1273.3 Test
129.compress SPEC 95 Integer 35.7 Train

130.li SPEC 95 Integer 183.3 Train
132.ijpeg SPEC 95 Integer 553.3 Test
134.per l SPEC 95 Integer 2391.5 Test (Jumble)

147.vor tex SPEC 95 Integer 2520.1 Train
164.gzip SPEC 2000 Integer 526.4 Reduced Small

175.vpr – Place SPEC 2000 Integer 216.9 Reduced Medium
175.vpr - Route SPEC 2000 Integer 93.7 Reduced Medium

177.mesa SPEC 2000 Floating-Point 1220.9 Reduced Large
181.mcf SPEC 2000 Integer 174.7 Reduced Medium

183.equake SPEC 2000 Floating-Point 715.9 Reduced Large
188.ammp SPEC 2000 Floating-Point 244.9 Reduced Medium
197.parser SPEC 2000 Integer 459.2 Reduced Medium

memory, the number of instructions for each
benchmark was limited to reduce the memory
requirements (which needed to be below the machine
limit of 50 GB). However, each benchmark ran to
completion. All benchmarks were compiled using gcc
2.6.3 at optimization level O3. Table 1 lists the
benchmarks profiled in this paper and some selected
characteristics:

For the SPEC 2000 benchmarks, reduced input sets
were used to reduce the simulation times. Benchmarks
that use the reduced input sets exhibit similar behavior as
compared to when the benchmark uses the test, train, or
reference input sets. For more information on the reduced
input sets for these benchmarks, see [3].

175.vpr is a versatile place and route tool. Executing
the benchmark involves first running the place function
and then the route function (with the output of the place
function as the input). As a result, two separate
simulations captured the unique computations for these
two functions. Therefore, in this paper, the results for the
place and route functions are given separately.

4. Results
The following terms appear in the subsequent

subsections: frequency of repetition and occurrences. The
frequency of repetition, or frequency, is the number of
times that a unique computation occurs (i.e. the number of
dynamic instructions with that particular unique
computation). Therefore, if one unique computation has a
frequency of repetition of 1, it is completely unique, i.e. it
is the only dynamic instruction in the entire program with
that unique computation.

The number of occurrences is the number of times that

a particular frequency is present. See Subsection 4.1 for
an example of the number of occurrences.

4.1. Distr ibution of Occurrences
The first result is the distribution of occurrences for

each frequency. For example, consider the following:
0+1, PC = 0, Frequency = 400
0+9, PC = 0, Frequency = 350
1+1, PC = 0, Frequency = 500
1+2, PC = 0, Frequency = 450
1+3, PC = 0, Frequency = 500
1+4, PC = 0, Frequency = 450
1+5, PC = 0, Frequency = 450
1+6, PC = 0, Frequency = 450
1+7, PC = 0, Frequency = 550

Figure 1: Example unique computations

Therefore, 0+9 occurs 350 times in the program; 0+1 400
times; 1+2, 1+4, 1+5, and 1+6 450 times each; 1+1 and

Table 2: Distribution of occurrences for each
frequency for the unique computations in fig. 1

Range Occur rences Unique Computations
300-349 0
350-399 1 0+9
400-449 1 0+1
450-499 4 1+2, 1+4, 1+5, 1+6
500-549 2 1+1, 1+3
550-599 1 1+7
600-649 0

Figure 2: Frequency distribution of unique computations per benchmark, global level, normalized

Figure 3: Percentage of dynamic instructions due to the unique computations in each frequency range,
global level, normalized

1+3 500 times each; and 1+7 550 times. Table 2 shows
the distribution of occurrences for each frequency for the
unique computations in Figure 1.

Figure 2 shows the frequency distribution, for
logarithmic frequency ranges, of the unique computations
for the benchmarks listed in Table 1. After trying several
different frequency range sizes, the logarithmic range size
was used since it produced the most compact results
without affecting the content.

In Figure 2, the height of each bar corresponds to the
percentage of unique computations that have a frequency
of execution within that frequency range. For example, if
the unique computation 10004+11442, PC = 1000
executes 8 times (e.g. frequency of execution = 8), then it

falls into the < 101 frequency range.
As can be seen in Figure 2, for all benchmarks except

for 130.li, almost 60% of the unique computations have
execution frequencies less than 10 and almost 80% of all
unique computations have execution frequencies less than
100. This figure shows that the performance benefit in
reusing most of the unique computations is relatively low
since most of them are only executed a few times.

4.2. Number of Redundant Instructions
The product of the frequency of execution for a unique

computation and the number of occurrences for a
particular frequency corresponds to the number of
dynamic instructions that those unique computations

Frequency Distr ibution of the Unique Computations

0%

20%

40%

60%

80%

100%

099.g
o

124.m
88ks

im

126.g
cc

129.co
m

pre
ss

130.li

132.ijp
eg

134.p
erl

147.vo
rte

x

164.g
zip

175.vp
r -

 P
lace

175.vp
r -

 R
oute

177.m
esa

181.m
cf

183.equake

188.am
m

p

197.parse
r

Benchmark

P
er

ce
n

ta
g

e

<10^9

<10^8

<10^7

<10^6

<10^5

<10^4

<10^3

<10^2

<10^1

Percentage of Dynamic Instructions Due to the Unique Computations in Each Frequency Range

0%

20%

40%

60%

80%

100%

099.g
o

124.m
88ks

im

126.g
cc

129.co
m

pre
ss

130.li

132.ijp
eg

134.p
erl

147.vo
rte

x

164.g
zip

175.vp
r -

 P
lace

175.vp
r -

 R
oute

177.m
esa

181.m
cf

183.equake

188.am
m

p

197.parse
r

Benchmark

P
er

ce
n

ta
g

e

<10^9

<10^8

<10^7

<10^6

<10^5

<10^4

<10^3

<10^2

<10^1

represent. For example, if three unique computations
each have a frequency of 500,000, then those unique
computations are executed a total of 1,500,000 times,
which corresponds to 1,500,000 dynamic instructions.
Figure 3 shows the percentage of dynamic instructions
due to the unique computations in each frequency range.

In Figure 3, the height of each bar corresponds to the
percentage of dynamic instructions that have their unique
computation in that frequency range. For each frequency
range, comparing the heights of the bars in Figures 2 and
3 gives the relationship between the unique computations
and dynamic instructions. For instance, in 124.m88ksim,
more than 90% of the unique computations represent less
than 4.9% of the dynamic instructions. Similar
relationships between the percentage of unique
computations and the percentage of dynamic instructions
hold for the other benchmarks.

In short, more than 90% of the unique computations
account for only 1.2% (147.vortex) to 31.5% (130.li) of
the total number of instructions. Therefore, from Figures
2 and 3, a very small percentage of the unique
computations account for a disproportionately large
percentage of the total number of instructions. This is one
of the key results of this paper.

Building upon this key result and applying it to value
reuse, Table 3 shows the percentage of dynamic
instructions that are represented by less than 1024 unique
computations (the size of a realistically sized reuse
buffer).

Table 3 shows that less than 1024 unique
computations represent a significant percentage of
instructions (19.4% - 95.5%). [7] exploited this
characteristic by statically determining the highest
frequency unique computations and caching them into a
precomputation table (i.e. a value reuse table with no
write ports). This produced speedups up to 40.7% when
2048 unique computations were cached.

4.4. Top 100 Unique Computations
The following tables, Table 4, show the characteristics

of the top 100 unique computations, by occurrence, for
each benchmark. (To be more precise, the tables show
the characteristics of the unique computations with the top
100 occurrences. As a result, for some benchmarks, the
tables represent the characteristics for more than 100
unique computations if two unique computations have the
same number of occurrences.) In Table 4, the second
column shows what percentage of the unique
computations these Top 100 unique computations
represent while the third column does the same for the
total number of instructions.

Two conclusions can be drawn from Table 4. First of
all, Table 4 confirms the conclusion drawn from Figures 2
and 3 that a very small percentage of the unique
computations account for a disproportionately large

number of the dynamic instructions.
Although Figures 2 and 3 and Table 4 show that a very

small percentage of the unique computations account for a
disproportionately large number of the dynamic
instructions, not all of those unique computations will
yield the same performance gain or will consume the
same amount of area in a value reuse table. For instance,
while a double floating-point divide takes multiple cycles
to execute – and therefore is an ideal candidate for reuse,
storing two 64-bit double words (input operands) and one
(128-bit) quad word is very expensive in terms of area.
Furthermore, comparing two 64-bit numbers could delay
the actual reuse of the instruction by a cycle. However,
what is not clear for these instructions is whether the large

Table 4: Characteristics of the unique
computations for the top 100 occurrences

Benchmark % of Unique
Computations % of Total Inst.

099.go 0.01214 21.0
124.m88ksim 0.00324 62.6

126.gcc 0.00085 21.9
129.compress 0.02477 51.9

130.li 0.03187 40.7
132.ijpeg 0.00124 19.9
134.perl 0.00023 34.6

147.vortex 0.00078 40.6
164.gzip 0.00145 21.5

175.vpr-Place 0.00163 37.3
175.vpr-Route 0.00958 35.6

177.mesa 0.00110 86.9
181.mcf 0.00030 22.7

183.equake 0.00119 37.4
188.ammp 0.00469 53.6
197.parser 0.00055 25.7

reduction in the execution latency is worth the additional
cost in area and a comparatively longer access time.
Similarly, reusing the unique computation for a store
instruction probably would not increase the performance
as much as the frequency of repetition would indicate
because stores are probably not on the critical path.
However, for load instructions, either the target address
for the load can be reused or the data returned by the load
can reused (which is essentially last-value prediction).
Finally, reusing the unique computations for move
instructions (e.g. move to or from the high or low register)
does not improve the performance because the instruction
does not generate an output. In this case, the instruction
only performs an action (a register write), which has to
occur in program order. Therefore, the second conclusion
from Table 4 is that not all the instructions in the Top 100
occurrences can be reused or will have the same

performance gain when reused.

4.5. Compar ison of Global Level Redundant
Computation in I nteger and Floating-Point

After comparing the results of 177.mesa, 183.equake
and 188.ammp against the other 13 benchmarks for
Figures 2 and 3 and Tables 3 and 4 there does not appear
to be any significant differences between the integer and
floating-point benchmarks. There is one slight difference,
for the floating-point benchmarks, unique computations
from floating-point instructions are in the Top 100 list.

This is expected since these benchmarks contain a
significantly higher percentage of floating-point
instructions. However, since only three floating-point
benchmarks were profiled, no definite conclusions can be
made at this time.

4.6. Compar ison to Local
One of the key questions that this paper tries to answer

is how much more redundant computation is available and
can be exploited at the global level than at the local level?
This section compares the global and local level

Figure 4A: Frequency distribution of unique computations per benchmark, local level normalized

Figure 4B: Percentage of dynamic instructions due to the unique computations in each frequency
range, local level, normalized

Percentage of Dynamic Instructions Due to the Unique Computations in Each Frequency Range

0%

20%

40%

60%

80%

100%

099.g
o

12
4.m

88ks
im

126.g
cc

129.co
m

pre
ss

13
0.li

132
.ijp

eg

134.p
erl

147.vo
rte

x

164.g
zip

175
.vp

r -
 P

lace

17
5.vp

r -
 R

oute

177.m
esa

181.m
cf

183.e
quake

188
.a

m
m

p

197
.p

ar
se

r

Benchmark

P
er

ce
n

ta
g

e

<10̂ 9

<10̂ 8

<10̂ 7

<10̂ 6

<10̂ 5

<10̂ 4

<10̂ 3

<10̂ 2

<10̂ 1

Frequency Distribution of Unique Computations

0%

20%

40%

60%

80%

100%

099.g
o

124.m
88ks

im

126.g
cc

129.co
m

pre
ss

130.li

132.ijp
eg

134.p
erl

147.vo
rte

x

164.g
zip

175.vp
r -

 P
lace

175.vp
r -

 R
oute

177.m
esa

181.m
cf

183.e
quake

188.a
m

m
p

197.p
ars

er

Benchmark

P
er

ce
n

ta
g

e

<10^9

<10^8

<10^7

<10^6

<10^5

<10^4

<10^3

<10^2

<10^1

results for the:

1. Percentage of Instructions in Each Frequency Range
2. Percentage of Instructions Covered by the Unique

Computations From the Top 100 Occurrences

4.6.1. Percentage of Instructions in Each Frequency
Range

Figure 4A shows the frequency distribution of the
unique computations at the local level while Figure 4B
shows the percentage of dynamic instructions due to the
unique computations in each frequency range at the local
level.

For each benchmark, since there are fewer unique
computations in the global level case, a direct comparison
of Figures 2 and 4A does not make sense. However,
since there are the same number of instructions in both the
global and local levels (for the same benchmark), a direct
comparison can be made.

Comparing those two figures shows that the unique
computations in the higher frequency ranges at the global
level represent more dynamic instructions as compared to
the unique computations in the same frequency ranges at
the local level. This is expected since unique
computations that have the same opcode and input
operands but have different PCs will map to different
unique computations at the local level, but to the same
unique computation at the global level.

This result could have a significant impact on the
performance of value reuse at the local or global levels.
First of all, this means that a single global level unique
computation accounts for a larger percentage of the
benchmark’s instructions than does the corresponding
local level unique computation. Secondly, at the global
level, since there are fewer unique computations, there are
fewer replacements in the value reuse table. Therefore,
unique computations with very high frequencies of
execution should stay in the table longer.

4.6.2. Percentage of instructions covered by
unique computations from the top 100
occurrences

Table 5 compares the percentage of instructions due to
the unique computations from the Top 100 occurrences
for both the global and local levels. The number of
unique computations in this table is the same for both the
global and local levels and is the number of unique
computations in the Top 100 occurrences at the global
level.

Table 5: Percentage of instructions due to the
unique computations from the top 100

occurrences for both the global and local levels

Percentage of Total Inst.
Benchmark Global Local Global – Local

099.go 21.0 14.2 6.8
124.m88ksim 62.6 57.6 5.0

126.gcc 21.9 13.1 8.8
129.compress 51.9 48.0 3.9

130.li 40.7 36.0 4.7
132.ijpeg 19.9 14.4 5.5
134.per l 34.6 27.1 7.5

147.vor tex 40.6 28.2 12.4
164.gzip 21.5 19.7 1.8

175.vpr -Place 37.3 25.4 11.9
175.vpr -Route 35.6 26.4 9.2

177.mesa 86.9 76.4 10.5
181.mcf 22.7 21.2 1.5

183.equake 37.4 24.8 12.6
188.ammp 53.6 47.5 6.1
197.parser 25.7 21.7 4.0

As expected, the unique computations for the Top 100
occurrences at the global level cover a higher percentage
of instructions for all benchmarks as compared to the
unique computations for the Top 100 occurrences at the
local level. Therefore, a global value reuse mechanism
could reuse an additional 1.5% (181.mcf) to 12.6%
(183.equake) of the total number of dynamic instructions
as compared to the local level. While these percentages
for the global level cases are not dramatically larger than
their local level counterparts, it will increase if more
occurrences are include (i.e. using a Top 1000 list vs. a
Top 100 list).
4.6.3. Global vs. Local Compar ison

The conclusion from Subsections 4.6.1 and 4.6.2 is
that there is more performance potential for value reuse at
the global level as compared to the local level. However,
in spite of these results, it is difficult to determine the
performance difference between these two approaches.
The performance difference primarily depends on the
following three factors: 1) The number of reused
instructions on the critical path for both approaches, 2)
The average number of redundant unique computations in
the local value reuse table, and 3) The precise
implementation of the global value reuse mechanism.

For the first factor, it is reasonable to assume that
distribution of reused instructions that are on the critical
path for the two approaches is similar. Therefore, this
factor should not be the primary contributor to the
performance difference. The second factor is essentially
an efficiency metric. If the local value reuse table holds
several unique computations that only differ by PC, then
some of its entries are wasted – when compared to the
global value reuse table. If there are very few unique
computations in the local value reuse table, then the

potential performance difference between the two
approaches will be greater. Finally, the third factor
determines the area of and access time to the global value
reuse hardware. For the same area, the global value reuse
table may have fewer entries as compared to the local
value reuse table if more hardware, such as comparators,
is needed. Furthermore, the access time of the global
value reuse table could be higher, which would obviously
affect the performance.

Therefore, the most accurate way of comparing these
two approaches is to implement and then compare them.

However, these two approaches could be
complementary, i.e. combining the two approaches could
provide better performance than by using either one
individually. While the local level does not account for as
many instructions as does the global level, due to
implementation differences, the local level reuse
mechanism could have a lower access time and a lower
area cost. Therefore, combining the two approaches
could provide better performance than using either one
individually.

5. Future Work
These results generate several ideas that warrant

further investigation. First of all, how much performance
can be gained by only exploiting global level value reuse?
What kind of global value reuse mechanism is most
efficient in terms of access time and area? Should this
global value reuse mechanism only target certain types of
instructions?

Secondly, how does that performance gain compare to
only exploiting value reuse at the local level? In terms of
the area, is that performance gain cost-effective?

Third, can global and local level value reuse
mechanisms be combined to produce a more effective
(area-wise or performance-wise) value reuse mechanism?
Can these two approaches be combined to yield a value
reuse mechanism that has the best qualities of each
approach?

6. Conclusion
This paper presents an analysis of the potential for

global value reuse and compares the amount of redundant
computation at the global level to the amount of
redundant computation at the local level.

For all benchmarks, less than 10% of the unique
computations for account at least 65% of the dynamic
instructions. More than 90% of the unique computations
account for only 1.2% (147.vortex) to 31.5% (130.li) of
the total number of instructions. Furthermore, 19.4% -
95.5% of the dynamic instructions are the results of less
than 1000 of the most frequently occurring unique
computations. For an equal number of unique
computations (approximately 100 for each benchmark)
for both the global and local levels, the unique

computations for the global level account for an
additional 1.5% to 12.6% of the total number of dynamic
instructions. This difference will increase as more unique
computations are added to both levels.

In conclusion, this paper makes the following key
conclusions: 1) All benchmarks have significant amounts
of redundant computations, 2) Significantly more
redundant computation exists at the global level as
compared to the local level, and 3) A very small
percentage of unique computations account for a
disproportionately large number of dynamic instructions.

7. Bibliography
[1] D. Burger and T. Austin; “The Simplescalar Tool Set,

Version 2.0” ; University of Wisconsin Computer Sciences
Department Technical Report 1342.

[2] A. Gonzalez, J. Tubella, and C. Molina; “The Performance
Potential of Data Value Reuse” ; University of Politecenica
of Catalunya Technical Report: UPC-DAC-1998-23, 1998

[3] A. KleinOsowski, J. Flynn, N. Meares, and D. Lilja;
"Adapting the SPEC 2000 Benchmark Suite for
Simulation-Based Computer Architecture Research";
Workshop on Workload Characterization, International
Conference on Computer Design, 2000.

[4] C. Molina, A. Gonzalez, and J. Tubella; “Dynamic
Removal of Redundant Computations” ; International
Conference on Supercomputing, 1999

[5] A. Sodani and G. Sohi; “Dynamic Instruction Reuse” ;
International Symposium on Computer Architecture, 1997.

[6] A. Sodani and G. Sohi; “An Empirical Analysis of
Instruction Repetition” ; International Symposium on
Architectural Support for Programming Languages and
Operating Systems, 1998.

[7] J. Yi and D. Lilja; “ Increasing Instruction-Level
Parallelism with Instruction Precomputation” ; University of
Minnesota Electrical and Computer Engineering Technical
Report No. ARCTiC 01-03, 2001.

8. Acknowledgements
The authors thank Chris Hescott for implementing a B-
tree that stored the unique computation information and
dramatically reduced simulation time. The authors would
also like to thank Baris Kazar and Keith Osowski for their
helpful comment about previous drafts of this paper. This
work was supported in part by National Science
Foundation grant numbers CCR-9900605 and EIA-
9971666, and by the Minnesota Supercomputing Institute.

